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1. Fluids Mechanics and Fluid Properties

What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the
statics and dynamics of fluids - both liquids and gases. The analysis of the behaviour of fluids is based on
the fundamental laws of mechanics which relate continuity of mass and energy with force and momentum
together with the familiar solid mechanics properties.

1.1 Objectives of this section
• Define the nature of a fluid.

• Show where fluid mechanics concepts are common with those of  solid mechanics and indicate
some fundamental areas of difference.

• Introduce viscosity and show what are Newtonian and non-Newtonian fluids

• Define the appropriate physical properties and show how these allow differentiation between
solids and fluids as well as between liquids and gases.

1.2 Fluids
There are two aspects of fluid mechanics which make it different to solid mechanics:

1. The nature of a fluid is much different to that of a solid
2. In fluids we usually deal with continuous streams of fluid without a beginning or end. In solids

we only consider individual elements.

We normally recognise three states of matter: solid; liquid and gas. However, liquid and gas are both
fluids: in contrast to solids they lack the ability to resist deformation. Because a fluid cannot resist the
deformation force, it moves, it flows under the action of the force. Its shape will change continuously as
long as the force is applied. A solid can resist a deformation force while at rest, this force may cause some
displacement but the solid does not continue to move indefinitely.

The deformation is caused by shearing forces which act tangentially to a surface. Referring to the figure
below, we see the force F acting tangentially on a rectangular (solid lined) element ABDC. This is a
shearing force and produces the (dashed lined) rhombus element A’B’DC.

Shearing force, F, acting on a fluid element.

We can then say:

A Fluid is a substance which deforms continuously,
or flows, when subjected to shearing forces.

and conversely this definition implies the very important point that:
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If a fluid is at rest there are no shearing forces acting.
All forces must be perpendicular to the planes which the are acting.

When a fluid is in motion shear stresses are developed if the particles of the fluid move relative to one
another. When this happens adjacent particles have different velocities. If fluid velocity is the same at
every point then there is no shear stress produced: the particles have zero relative velocity.

Consider the flow in a pipe in which water is flowing. At the pipe wall the velocity of the water will be
zero. The velocity will increase as we move toward the centre of the pipe. This change in velocity across
the direction of flow is known as velocity profile and shown graphically in the figure below:

Velocity profile in a pipe.

Because particles of fluid next to each other are moving with different velocities there are shear forces in
the moving fluid i.e. shear forces are normally present in a moving fluid. On the other hand, if a fluid is a
long way from the boundary and all the particles are travelling with the same velocity, the velocity profile
would look something like this:

Velocity profile in uniform flow

and there will be no shear forces present as all particles have zero relative velocity. In practice we are
concerned with flow past solid boundaries; aeroplanes, cars, pipe walls, river channels etc. and shear
forces will be present.
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1.2.1 Newton’s Law of Viscosity
How can we make use of these observations? We can start by considering  a 3d rectangular element of
fluid, like that in the figure below.

Fluid element under a shear force

The shearing force F acts on the area on the top of the element. This area is given by A s x= ×δ δ . We can
thus calculate the shear stress which is equal to force per unit area i.e.

shear stress,   τ =
F

A

The deformation which this shear stress causes is measured by the size of the angle φ and is know as
shear strain.

In a solid shear strain, φ, is constant for a fixed shear stress τ.
In a fluid φ increases for as long as τ is applied - the fluid flows.

It has been found experimentally that the rate of shear stress (shear stress per unit time, τ/time) is directly
proportional to the shear stress.

If the particle at point E (in the above figure) moves under the shear stress to point E’ and it takes time t to
get there, it has moved the distance x. For small deformations we can write

shear strain φ =
x

y

rate of shear strain =

= =

=

φ
t
x

ty

x

t y

u

y

1

where 
x

t
u=  is the velocity of the particle at E.

Using the experimental result that shear stress is proportional to rate of shear strain then

τ = × Constant
u

y
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The term 
u

y
 is the change in velocity with y, or the velocity gradient, and may be written in the

differential form 
du

dy
. The constant of proportionality is known as the dynamic viscosity, µ , of the fluid,

giving

τ µ=
du

dy

This is known as Newton’s law of viscosity.

1.2.2 Fluids vs. Solids
In the above we have discussed the differences between the behaviour of solids and fluids under an
applied force. Summarising, we have;

1. For a solid the strain is a function of the applied stress (providing that  the elastic limit has not been
reached). For a fluid, the rate of strain is proportional to the applied stress.

2. The strain in a solid is independent of the time over which the force is applied and (if the elastic limit
is not reached) the deformation disappears when the force is removed. A fluid continues to flow for as
long as the force is applied and will not recover its original form when the force is removed.

It is usually quite simple to classify substances as either solid or liquid. Some substances, however, (e.g.
pitch or glass) appear solid under their own weight. Pitch will, although appearing solid at room
temperature, deform and spread out over days - rather than the fraction of a second it would take water.

As you will have seen when looking at properties of solids, when the elastic limit is reached they seem to
flow. They become plastic. They still do not  meet the definition of true fluids as they will only flow after
a certain minimum shear stress is attained.

1.2.3 Newtonian / Non-Newtonian Fluids
Even among fluids which are accepted as fluids there can be wide differences in behaviour under stress.
Fluids obeying Newton’s law where the value of µ is constant are known as Newtonian fluids. If µ is
constant the shear stress is linearly dependent on velocity gradient. This is true for most common fluids.

Fluids in which the value of µ is not constant are known as non-Newtonian fluids. There are several
categories of these, and they are outlined briefly below.

These categories are based on the relationship between shear stress and the velocity gradient (rate of shear
strain) in the fluid. These relationships can be seen in the graph below for several categories



CIVE 1400: Fluid Mechanics Fluid Mechanics and Properties of Fluids 14

Shear stress vs. Rate of shear strain δu/δy

Each of these lines can be represented by the equation

τ
δ
δ

= +






A B

u

y

n

where A, B and n are constants. For Newtonian fluids A = 0, B = µ and n = 1.

Below are brief description of the physical properties of the several categories:

• Plastic: Shear stress must reach a certain minimum before flow commences.

• Bingham plastic: As with the plastic above a minimum shear stress must be achieved. With this
classification n = 1.  An example is sewage sludge.

• Pseudo-plastic: No minimum shear stress necessary and the viscosity decreases with rate of shear, e.g.
colloidial substances like clay, milk and cement.

• Dilatant substances; Viscosity increases with rate of shear e.g. quicksand.

• Thixotropic substances: Viscosity decreases with length of time shear force is applied e.g. thixotropic
jelly paints.

• Rheopectic substances: Viscosity increases with length of time shear force is applied

• Viscoelastic materials: Similar to Newtonian but if there is a sudden large change in shear they
behave like plastic.

There is also one more - which is not real, it does not exist - known as the ideal fluid. This is a fluid
which is assumed to have no viscosity. This is a useful concept when theoretical solutions are being
considered - it does help achieve some practically useful solutions.

1.2.4 Liquids vs. Gasses
Although liquids and gasses behave in much the same way and share many similar characteristics, they
also possess distinct characteristics of their own. Specifically

• A liquid is difficult to compress and often regarded as being incompressible.
A gas is easily to compress and usually treated as such - it changes volume with pressure.
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• A given mass of liquid occupies a given volume and will occupy the container it is in and form a free
surface (if the container is of a larger volume).
A gas has no fixed volume, it changes volume to expand to fill the containing vessel. It will
completely fill the vessel so no free surface is formed.

1.3 Causes of Viscosity in Fluids
1.3.1 Viscosity in Gasses

The molecules of gasses are only weakly kept in position by molecular cohesion (as they are so far apart).
As adjacent layers move by each other there is a continuous exchange of molecules. Molecules of a
slower layer move to faster layers causing a drag, while molecules moving the other way exert an
acceleration force. Mathematical considerations of this momentum exchange can lead to Newton law of
viscosity.

If temperature of a gas increases the momentum exchange between layers will increase thus increasing
viscosity.

Viscosity will also change with pressure - but under normal conditions this change is negligible in gasses.

1.3.2 Viscosity in Liquids

There is some molecular interchange between adjacent layers in liquids - but as the molecules are so much
closer than in gasses the cohesive forces hold the molecules in place much more rigidly. This cohesion
plays an important roll in the viscosity of liquids.

Increasing the temperature of a fluid reduces the cohesive forces and increases the molecular interchange.
Reducing cohesive forces reduces shear stress, while increasing molecular interchange increases shear
stress. Because of this complex interrelation the effect of temperature on viscosity has something of the
form:

( )µ µT AT BT= + +0 1

where µT  is the viscosity at temperature T°C, and µ0  is the viscosity at temperature 0°C. A and B are
constants for a particular fluid.

High pressure can also change the viscosity of a liquid. As pressure increases the relative movement of
molecules requires more energy hence viscosity increases.
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1.4 Properties of Fluids

The properties outlines below are general properties of fluids which are of interest in engineering. The
symbol usually used to represent the property is specified together with some typical values in SI units for
common fluids. Values under specific conditions (temperature, pressure etc.) can be readily found in
many reference books. The dimensions of each unit is also give in the MLT system (see later in the
section on dimensional analysis for more details about dimensions.)

1.4.1 Density
The density of a substance is the quantity of matter contained in a unit volume of the substance. It can be
expressed in three different ways.

1.4.1.1 Mass Density
Mass Density, ρ , is defined as the mass of substance per unit volume.

Units: Kilograms per cubic metre, kg m/ 3  (or kg m−3 )

Dimensions: ML−3

Typical values:

Water = 1000 kg m−3 , Mercury = 13546 kg m−3  Air = 1.23 kg m−3 , Paraffin Oil = 800 kg m−3 .

(at pressure =1.013 × − −10 5 2N m and Temperature  = 288.15 K.)

1.4.1.2 Specific Weight
Specific Weight ω , (sometimes γ, and sometimes known as specific gravity) is defined as the weight per
unit volume.

or

The force exerted by gravity, g, upon a unit volume of the substance.

The Relationship between g and ω  can be determined by Newton’s 2nd Law, since

weight per unit volume = mass per unit volume × g

ω ρ= g

Units: Newton’s per cubic metre, N m/ 3  (or N m−3 )

Dimensions: ML T− −2 2 .

Typical  values:

Water =9814 N m−3 , Mercury = 132943 N m−3 , Air =12.07 N m−3 , Paraffin Oil =7851 N m−3
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1.4.1.3 Relative Density
Relative Density, σ , is defined as the ratio of mass density of a substance to some standard mass density.

For solids and liquids this standard mass density is the maximum mass density for water (which occurs at
4

�

c) at atmospheric pressure.

σ
σ

σ= subs ce

H O at c

tan

( )2 4
�

Units: None, since a ratio is a pure number.

Dimensions: 1.

Typical values: Water = 1, Mercury = 13.5, Paraffin Oil =0.8.

1.4.2 Viscosity
Viscosity, µ, is the property of a fluid, due to cohesion and interaction between molecules, which offers
resistance to sheer deformation. Different fluids deform at different rates under the same shear stress.
Fluid with a high viscosity such as syrup, deforms more slowly than fluid with a low viscosity such as
water.

All fluids are viscous, “ Newtonian Fluids”  obey the linear relationship

given by Newton’s law of viscosity. τ µ=
du

dy
, which we saw earlier.

where τ  is the shear stress,

Units N m−2 ;  kg m s− −1 2

Dimensions ML T− −1 2 .

du

dy
is the velocity gradient or rate of shear strain, and has

Units: radians s−1 ,

Dimensions t −1

µ  is the “ coefficient of dynamic viscosity”  - see below.

1.4.2.1 Coefficient of Dynamic Viscosity
The Coefficient of Dynamic Viscosity, µ , is defined as the shear force, per unit area, (or shear stress τ ),
required to drag one layer of fluid with unit velocity past another layer a unit distance away.

µ τ= = =
×

=
×

du

dy

Force

Area

Velocity

Distance

Force  Time

Area
  

Mass

Length Area

Units: Newton seconds per square metre, N sm−2 or Kilograms per meter per second, kg m s− −1 1 .

(Although note that µ  is often expressed in Poise, P, where 10 P = 1 kg m s− −1 1 .)

Typical values:

Water =1.14 × −10 3  kg m s− −1 1 , Air =1.78 × −10 5  kg m s− −1 1 , Mercury =1.552 kg m s− −1 1 ,

Paraffin Oil =1.9 kg m s− −1 1 .
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1.4.2.2 Kinematic Viscosity
Kinematic Viscosity, ν , is defined as the ratio of dynamic viscosity to mass density.

ν
µ
ρ=

Units: square metres per second, m s2 1−

(Although note that ν is often expressed in  Stokes, St, where 104 St = 1 m s2 1− .)

Dimensions: L T2 1− .

Typical values:

Water =1.14 × −10 6  m s2 1− , Air =1.46 × −10 5  m s2 1− , Mercury =1.145 × −10 4  m s2 1− ,
Paraffin Oil =2.375 × −10 3  m s2 1− .



CIVE 1400: Fluid Mechanics Forces due to Static Fluids 19

2. Forces in Static Fluids
This section will study the forces acting on or generated by fluids at rest.

Objectives

• Introduce the concept of pressure;

• Prove it has a unique value at any particular elevation;

• Show how it varies with depth according to the hydrostatic equation and

• Show how pressure can be expressed in terms of head of fluid.

This understanding of pressure will then be used to demonstrate methods of pressure measurement that
will be useful later with fluid in motion and also to analyse the forces on submerges surface/structures.

2.1 Fluids statics
The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know
that:

• a static fluid can have no shearing force acting on it, and that

• any force between the fluid and the boundary must be acting at right angles to the boundary.

Pressure force normal to the boundary

Note that this statement is also true for curved surfaces, in this case the force acting at any point is normal
to the surface at that point. The statement is also true for any imaginary plane in a static fluid. We use this
fact in our analysis by considering elements of fluid bounded by imaginary planes.

We also know that:

• For an element of fluid at rest, the element will be in equilibrium - the sum of the components of
forces in any direction will be zero.

• The sum of the moments of forces on the element about any point must also be zero.

It is common to test equilibrium by resolving forces along three mutually perpendicular axes and also by
taking moments in three mutually perpendicular planes an to equate these to zero.
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2.2 Pressure
As mentioned above a fluid will exert a normal force on any boundary it is in contact with. Since these
boundaries may be large and the force may differ from place to place it is convenient to work in terms of
pressure, p, which is the force per unit area.

If the force exerted on each unit area of a boundary is the same, the pressure is said to be uniform.

pressure 
Force

Area over which the force is applied
=

=p
F

A

Units: Newton’s per square metre, N m−2 , kg m s− −1 2 .

(The same unit is also known as a Pascal, Pa, i.e.  1Pa = 1 N m−2 )

(Also frequently used is the alternative SI unit the bar, where 1 105 2bar N m= − )

Dimensions: ML T− −1 2 .

2.2.1 Pascal’s Law for Pressure At A Point
(Proof that pressure acts equally in all directions.)

By considering a small element of fluid in the form of a triangular prism which contains a point P, we can
establish a relationship between the three pressures px in the x direction, py in the y direction and ps in the
direction normal to the sloping face.

Triangular prismatic element of fluid

The fluid is a rest, so we know there are no shearing forces, and we know that all force are acting at right
angles to the surfaces .i.e.

ps  acts perpendicular to surface ABCD,

px  acts perpendicular to surface ABFE and

py  acts perpendicular to surface FECD.

And, as the fluid is at rest, in equilibrium, the sum of the forces in any direction is zero.

Summing forces in the x-direction:
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Force due to px ,

F p Area p x yx x ABFE xx
= × = δ δ

Component of force in the x-direction due to ps ,

F p Area

p s z
y

s
p y z

x s ABCD

s

s

s
= − × ×

= −

= −

sinθ

δ δ
δ
δ

δ δ

( sinθ δ
δ= y
s )

Component of force in x-direction due to py ,

Fxy
= 0

To be at rest (in equilibrium)

( )
F F F

p x y p y z

p p

x x x s x y

x s

x s

+ + =

+ − =
=

0

0δ δ δ δ

Similarly, summing forces in the y-direction. Force due to py ,

F p Area p x zy y y ABCD y= × = δ δ

Component of force due to ps ,

F p Area

p s z
x

s
p x z

y s s ABCD

s

s

= − × ×

= −

= −

cosθ

δ δ
δ
δ

δ δ

( cosθ δ
δ= x
s )

Component of force due to px ,

Fyx
= 0

Force due to gravity,

weight =  - specific weight volume of element

=

×

− ×ρ δ δ δg x y z
1
2

To be at rest (in equilibrium)

( )

F F F

p x y p x z g x y z

y y y s y x

y s

+ + + =

+ − + −



 =

 weight 0

1

2
0δ δ δ δ ρ δ δ δ



CIVE 1400: Fluid Mechanics Forces due to Static Fluids 22

The element is small i.e.δx , δy  and δz  are small, and so δ δ δx y z  is very small and considered negligible,
hence

p py s=

thus

p p px y s= =

Considering the prismatic element again, ps  is the pressure on a plane at any angle θ , the x, y and z
directions could be any orientation. The element is so small that it can be considered a point so the
derived expression p p px y s= = . indicates that pressure at any point is the same in all directions.

(The proof may be extended to include the z axis).

Pressure at any point is the same in all directions.

This is known as Pascal’s Law and applies to fluids at rest.
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2.2.2 Variation Of Pressure Vertically In A Fluid Under Gravity

Vertical elemental cylinder of fluid

In the above figure we can see an element of fluid which is a vertical column of constant cross sectional
area, A, surrounded by the same fluid of mass density ρ . The pressure at the bottom of the cylinder is p1

at level z1 , and at the top is p2  at level z2 . The fluid is at rest and in equilibrium so all the forces in the
vertical direction sum to zero. i.e. we have

( )

Force due to   on A (upward)   

Force due to  on A (downward) 

Force due to weight of element (downward)    

 mass density  volume  

p p A

p p A

mg

gA z z

1 1

2 2

2 1

=

=
=

= × = −

ρ

Taking upward as positive, in equilibrium we have

( )p A p A gA z z1 2 2 1  =  0− − −ρ

( )p p gA z z2 1 2 1  − = − −ρ

Thus in a fluid under gravity, pressure decreases with increase in height ( )z z z= −2 1 .
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2.2.3 Equality Of Pressure At The Same Level In A Static Fluid
Consider the  horizontal cylindrical element of fluid in the figure below, with cross-sectional area A, in a
fluid of density ρ , pressure p1  at the left hand end and pressure p2  at the right hand end.

Horizontal elemental cylinder of fluid

The fluid is at equilibrium so the sum of the forces acting in the x direction is zero.

p A p Al r=

p pl r=

Pressure in the horizontal direction is constant.

This result is the same for any continuous fluid. It is still true for two connected tanks which appear not to
have any direct connection, for example consider the tank in the figure below.

Two tanks of different cross-section connected by a pipe

We have shown above that p pl r= and from the equation for a vertical pressure change we have

p p gzl p= + ρ

and

p p gzr q= + ρ

so

p gz p gz

p p

p q

p q

+ = +
=

ρ ρ

This shows that the pressures at the two equal levels, P and Q are the same.
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2.2.4 General Equation For Variation Of Pressure In A Static Fluid
Here we show how the above observations for vertical and horizontal elements of fluids can be
generalised for an element of any orientation.

A cylindrical element of fluid at an arbitrary orientation.

Consider the cylindrical element of fluid in the figure above, inclined at an angle θ  to the vertical, length
δs , cross-sectional area A in a static fluid of mass density ρ . The pressure at the end with height z  is p
and at the end of height z z+ δ is p p+δ .

The forces acting on the element are

( )
pA z

p p A z z

              acting at right - angles to the end of the face at 

   acting at right - angles to the end of the face at + +δ δ

mg

A sg

=

= × ×
=

 the weight of the element acting vertically down

mass density  volume  gravity

ρ δ

There are also forces from the surrounding fluid acting normal to these sides of the element.

For equilibrium of the element the resultant of forces in any direction is zero.

Resolving the forces in the direction along the central axis gives

( )pA p p A gA s

p g s

p

s
g

− + − =
= −

= −

δ ρ δ θ
δ ρ δ θ
δ
δ

ρ θ

cos

cos

cos

0

Or in the differential form

dp

ds
g= −ρ θcos

If θ = 90
�

then s is in the x or y directions, (i.e. horizontal),so
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dp

ds

dp

dx

dp

dy




 = = =

=θ 90

0
�

Confirming that pressure on any horizontal plane is zero.

If θ = 0
�

 then s is in the z direction (vertical) so

dp

ds

dp

dz
g





 = = −

=θ
ρ

0
�

Confirming the result

( )

p p

z z
g

p p g z z

2 1

2 1

2 1 2 1

−

−
= −

− = − −

ρ

ρ

2.2.5 Pressure And Head

In a static fluid of constant density we have the relationship 
dp

dz
g= −ρ , as shown above. This can be

integrated to give

p gz= − +ρ constant

In a liquid with a free surface the pressure at any depth z measured from the free surface so that z = -h (see
the figure below)

Fluid head measurement in a tank.

This gives the pressure

p gh= +ρ constant

At the surface of fluids we are normally concerned with, the pressure is the atmospheric pressure,
patmospheric . So

p gh p= +ρ atmospheric

As we live constantly under the pressure of the atmosphere, and everything else exists under this pressure,
it is convenient (and often done) to take atmospheric pressure as the datum. So we quote pressure as
above or below atmospheric.

Pressure quoted in this way is known as gauge pressure i.e.

Gauge pressure is

p ghgauge = ρ

The lower limit of any pressure is zero - that is the pressure in a perfect vacuum. Pressure measured above
this datum is known as absolute pressure i.e.
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Absolute pressure is

p gh pabsolute atmospheric

Absolute pressure =  Gauge prssure +  Atmospheric pressure

= +ρ

As g is (approximately) constant, the gauge pressure can be given by stating the vertical height of any
fluid of density ρ  which is equal to this pressure.

p gh= ρ

This vertical height is known as head of fluid.

Note: If pressure is quoted in head, the density of the fluid must also be given.

Example:

We can quote a pressure of 500 2K N m−  in terms of the height of a column of water of density,

ρ = −1000 3kg m . Using p gh= ρ ,

h
p

g
m= =

×
×

=ρ
500 10

1000 9 81
50 95

3

.
.  of water

And in terms of Mercury with density, ρ = × −13 6 103 3. kg m .

h m=
×

× ×
=

500 10
13 6 10 9 81

3 75
3

3. .
.  of Mercury
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2.3 Pressure Measurement By Manometer
The relationship between pressure and head is used to measure pressure with a manometer (also know as
a liquid gauge).

Objective:

• To demonstrate the analysis and use of various types of manometers for pressure
measurement.

2.3.1 The Piezometer Tube Manometer
The simplest manometer is a tube, open at the top, which is attached to the top of a vessel containing
liquid at a pressure (higher than atmospheric) to be measured. An example can be seen in the figure
below. This simple device is known as a Piezometer tube. As the tube is open to the atmosphere the
pressure measured is relative to atmospheric so is gauge pressure.

A simple piezometer tube manometer

pressure at A =  pressure due to column of liquid above A

pressure at B =  pressure due to column of liquid above B

p gh

p gh

A

B

=

=

ρ

ρ

1

2

This method can only be used for liquids (i.e. not for gases) and only when the liquid height is convenient
to measure. It must not be too small or too large and pressure changes must be detectable.
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2.3.2 The “U” -Tube Manometer
Using a “ U” -Tube enables the pressure of both liquids and gases to be measured  with the same
instrument. The “ U”  is connected as in the figure below and filled with a fluid called the manometric
fluid. The fluid whose pressure is being measured should have a mass density less than that of the
manometric fluid and the two fluids should not be able to mix readily - that is, they must be immiscible.

A “ U” -Tube manometer

Pressure in a continuous static fluid is the same at any horizontal level so,

pressure at B =  pressure at C

p pB C=

For the left hand arm

pressure at B =  pressure at A +  pressure due to height h  of fluid being measured1

p p ghB A= + ρ 1

For the right hand arm

pressure at C =  pressure at D +  pressure due to height h  of manometric fluid2

Amospheric manp p ghC = + ρ 2

As we are measuring gauge pressure we can subtract pAtmospheric  giving

p pB C=

p gh ghA = −ρ ρman 2 1

If the fluid being measured is a gas, the density will probably be very low in comparison to the density of
the manometric fluid i.e. ρman >> ρ. In this case the term ρgh1  can be neglected, and the gauge pressure
give by

p ghA = ρman 2
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2.3.3 Measurement Of Pressure Difference Using a “U” -Tube Manometer.
If the “ U” -tube manometer is connected to a pressurised vessel at two points the pressure difference
between these two points can be measured.

Pressure difference measurement by the “ U” -Tube manometer

If the  manometer is arranged as in the figure above, then

( )
( )

pressure at C =  pressure at C

man

man

p p

p p gh

p p g h h gh

p gh p g h h gh

C D

C A a

D B b

A a B b

=
= +

= + − +

+ = + − +

ρ

ρ ρ

ρ ρ ρ

Giving the pressure difference

( ) ( )p p g h h ghA B b a− = − + −ρ ρ ρman

Again, if the fluid whose pressure difference is being measured is a gas and ρ ρman >> , then the terms
involving ρ  can be neglected, so

p p ghA B− = ρman
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2.3.4 Advances to the “U”  tube manometer.
The “ U” -tube manometer has the disadvantage that the change in height of the liquid in both sides must
be read. This can be avoided by making the diameter of one side very large compared to the other. In this
case the side with the large area moves very little when the small area side move considerably more.

Assume the manometer is arranged as above to measure the pressure difference of a gas of (negligible
density) and that pressure difference is p p1 2− . If the datum line indicates the level of the manometric
fluid when the pressure difference is zero and the height differences when pressure is applied is as shown,

the volume of liquid transferred from the left side to the right ( )= ×z d2
2 4π /

And the fall in level of the left side is

( )
z

z d

D

z
d

D

1

2
2

2

2

2

4

4

=

=

= 





Volume moved

Area of left side

π
π

/

/

We know from the theory of the “ U”  tube manometer that the height different in the two columns gives
the pressure difference so

p p g z z
d

D

gz
d

D

1 2 2 2

2

2

2

1

− = + 















= + 















ρ

ρ

Clearly if D is very much larger than d then (d/D)2 is very small so

p p gz1 2 2− = ρ

So only one reading need be taken to measure the pressure difference.

If the pressure to be measured is very small then tilting the arm provides a convenient way of obtaining a
larger (more easily read) movement of the manometer. The above arrangement with a tilted arm is shown
in the figure below.
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Tilted manometer.

The pressure difference is still given by the height change of the manometric fluid but by placing the scale
along the line of the tilted arm and taking this reading large movements will be observed. The pressure
difference is then given by

p p gz

gx
1 2 2− =

=

ρ
ρ θsin

The sensitivity to pressure change can be increased further by a greater inclination of the manometer arm,
alternatively the density of the manometric fluid may be changed.

2.3.5 Choice Of Manometer
Care must be taken when attaching the manometer to vessel, no burrs must be present around this joint.
Burrs would alter the flow causing local pressure variations to affect the measurement.

Some disadvantages of manometers:

• Slow response - only really useful for very slowly varying pressures - no use at all for
fluctuating pressures;

• For the “ U”  tube manometer two measurements must be taken simultaneously to get the h
value. This may be avoided by using a tube with a much larger cross-sectional area on one side
of the manometer than the other;

• It is often difficult to measure small variations in pressure - a different manometric fluid may
be required - alternatively a sloping manometer may be employed; It cannot be used for very
large pressures unless several manometers are connected in series;

• For very accurate work the temperature and relationship between temperature and ρ must be
known;

Some advantages of manometers:

• They are very simple.

• No calibration is required - the pressure can be calculated from first principles
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2.4 Forces on Submerged Surfaces in Static Fluids

We have seen the following features of statics fluids

• Hydrostatic vertical pressure distribution

• Pressures at any equal depths in a continuous fluid are equal

• Pressure at a point acts equally in all directions (Pascal’s law).

• Forces from a fluid on a boundary acts at right angles to that boundary.

Objectives:

We will use these to analyse and obtain expressions for the forces on submerged surfaces. In doing this it
should also be clear the difference between:

• Pressure which is a scalar quantity whose value is equal in all directions and,

• Force, which is a vector quantity having both magnitude and direction.

2.4.1 Fluid pressure on a surface
Pressure is defined as force per unit area. If a pressure p acts on a small area δA  then the force exerted on
that area will be

F p A= δ

Since the fluid is at rest the force will act at right-angles to the surface.

General submerged plane

Consider the plane surface shown in the figure below. The total area is made up of many elemental areas.
The force on each elemental area is always normal to the surface but, in general, each force is of different
magnitude as the pressure usually varies.

We can find the total or resultant force, R, on the plane by summing up all of the forces on the small
elements i.e.

R p A p A p A p An n= + + = ∑1 1 2 2δ δ δ δKK

This resultant force will act through the centre of pressure, hence we can say

If the surface is a plane the force can be represented by one single resultant force,
acting at right-angles to the plane through the centre of pressure.

Horizontal submerged plane
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For a horizontal plane submerged in a liquid (or a plane experiencing uniform pressure over its surface),
the pressure, p, will be equal at all points of the surface. Thus the resultant force will be given by

R

R pA

= ×pressure  area of plane

=  

Curved submerged surface

If the surface is curved, each elemental force will be a different magnitude and in different direction but
still normal to the surface of that element. The resultant force can be found by resolving all forces into
orthogonal co-ordinate directions to obtain its magnitude and direction. This will always be less than the

sum of the individual forces, p Aδ∑ .

2.4.2 Resultant Force and Centre of Pressure on a submerged plane surface in a liquid.

This plane surface is totally submerged in a liquid of density ρ  and inclined at an angle of θ  to the
horizontal. Taking pressure as zero at the surface and measuring down from the surface, the pressure on
an element δA  , submerged a distance z, is given by

p gz= ρ

and therefore the force on the element is

F p A gz A= =δ ρ δ

The resultant force can be found by summing all of these forces i.e.

R g z A= ∑ρ δ

(assuming ρ  and g as constant).

The term z Aδ∑  is known as the 1st Moment of Area of the plane PQ about the free surface. It is equal to

Az  i.e.

z A Azδ∑ =

=  1  moment of area about the line of the free surfacest

where A is the area of the plane and z is the depth (distance from the free surface) to the centroid, G. This
can also be written in terms of distance from point O ( as z x= sinθ )

z A Axδ θ
θ

∑ =

= ×

sin

 1  Moment of area about a line through O  sinst

Thus:
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The resultant force on a plane

R gAz

gAx

=

=

ρ
ρ θsin

This resultant force acts at right angles to the plane through the centre of pressure, C, at a depth D. The
moment of R about any point will be equal to the sum of the moments of the forces on all the elements
δA  of the plane about the same point. We use this to find the position of the centre of pressure.

It is convenient to take moments about the point where a projection of the plane passes through the
surface, point O in the figure.

Moment of   about O =  Sum of moments of force 

                                         on all elements of  about O

R

Aδ
We can calculate the force on each elemental area:

Force on δ ρ δ
ρ θ δ

A gz A

g s A

=

= sin

And the moment of this force is:

Moment of Force on about O

δ ρ θ δ
ρ θ δ

A g s A s

g As

= ×

=

sin

sin 2

ρ θ,g and  are the same for each element, so the total moment is

Sum of moments of forces on all elemets of A about Oδ ρ θ δ= ∑g s Asin 2

We know the resultant force from above R gAx= ρ θsin , which acts through the centre of pressure at C,
so

Moment of   about O =  R gAx Scρ θsin

Equating gives,

ρ θ ρ θ δgAx S g s Acsin sin= ∑ 2

Thus the position of the centre of pressure along the plane measure from the point O is:

S
s A

Axc =
∑ 2δ

It look a rather difficult formula to calculate - particularly the summation term. Fortunately this term is
known as the 2nd Moment of Area , Io , of the plane about the axis through O and it can be easily
calculated for many common shapes. So, we know:

2nd moment of area about O = = ∑I s Ao
2δ

And as we have also seen that Ax = 1st Moment of area about a line through O,

Thus the position of the centre of pressure along the plane measure from the point O is:

Sc =  
2  Moment of area about a line through O

1  Moment of area about a line through O

nd

st

and epth to the centre of pressure is

D Sc= sinθ



CIVE 1400: Fluid Mechanics Forces due to Static Fluids 36

2.4.2.1 How do you calculate the 2nd moment of area?
To calculate the 2nd moment of area of a plane about an axis through O, we use the parallel axis theorem
together with values of the 2nd moment of area about an axis though the centroid of the shape obtained
from tables of geometric properties.

The parallel axis theorem can be written

I I Axo GG= + 2

where IGG  is the 2nd moment of area about an axis though the centroid G of the plane.

Using this we get the following expressions for the position of the centre of pressure

S
I

Ax
x

D
I

Ax
x

c
GG

GG

= +

= +




sinθ

(In the examination the parallel axis theorem and the IGG  will be given)
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2.4.2.2 The second moment of area of some common shapes.
The table blow given some examples of the 2nd moment of area about a line through the centroid of some
common shapes.

Shape Area A 2nd moment of area, IGG , about

an axis through the centroid

Rectangle

bd bd 3

12

Triangle

bd

2
bd 3

36

Circle

πR2 πR4

4

Semicircle

πR2

2

01102 4. R

Lateral position of Centre of Pressure

If the shape is symmetrical the centre of pressure lies on the line of symmetry. But if it is not symmetrical
its position must be found by taking moments about the line OG in the same way as we took moments
along the line through O, i.e.

R d

gz Ax

× =

∑
 Sum of the moments of the force on all elemnts of A about OG

=

δ

ρ δ

but we have R gAz= ρ  so

d
A zx

Az
=

∑ δ
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2.4.3 Submerged vertical surface - Pressure diagrams
For vertical walls of constant width it is usually much easier to find the resultant force and centre of
pressure. This is done graphically by means of a pressure diagram.

Consider the tank in the diagram below having vertical walls and holding a liquid of density ρ  to a depth
of H. To the right can be seen a graphical representation of the (gauge) pressure change with depth on one
of the vertical walls. Pressure increases from zero at the surface linearly by p gz= ρ , to a maximum at the
base of p gH= ρ .

Pressure diagram for vertical wall.

The area of this triangle represents the resultant force per unit width on the vertical wall, using SI units
this would have units of Newtons per metre. So

Area = × ×

=

=

1

2
1

2
1

2
2

AB BC

H gH

gH

ρ

ρ

Resultant force per unit width

R gH N m=
1

2
2ρ ( / )

The force acts through the centroid of the pressure diagram. For a triangle the centroid is at 2/3 its height,

i.e. in the figure above the resultant force acts horizontally through the point z H=
2

3
.

For a vertical plane the depth to the centre of pressure is given by

D H=
2

3

This can be checked against the previous method:

The resultant force is given by:

( )

R gAz gAx

g H
H

gH

= =

= ×

=

ρ ρ θ

ρ θ

ρ

sin

sin1
2

1

2
2

and the depth to the centre of pressure by:
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D
I

Ax
o=





sinθ

and by the parallel axis theorem (with width of 1)
I I Ax

H
H

H

H H

H

o GG= +

=
×

+ × 





= +

=

2

3 2

3 3

3

1

12
1

2

12 4

3
Giving depth to the centre of pressure

D
H

H

H

=








=

3

2

3

2

2

3

/

/

These two results are identical to the pressure diagram method.
The same pressure diagram technique can be used when combinations of liquids are held in tanks (e.g. oil
floating on water) with position of action found by taking moments of the individual resultant forces for
each fluid. Look at the examples to examine this area further.

More complex pressure diagrams can be draw for non-rectangular  or non-vertical planes but it is usually
far easier to use the moments method.
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2.4.4 Resultant force on a submerged curved surface
As stated above, if the surface is curved the forces on each element of the surface will not be parallel and
must be combined using some vectorial method.

It is most straightforward to calculate the horizontal and vertical components and combine these to obtain
the resultant force and its direction. (This can also be done for all three dimensions, but here we will only
look at one vertical plane).

In the diagram below the liquid is resting on top of  a curved base.

The element of fluid ABC is equilibrium (as the fluid is at rest).

Horizontal forces

Considering the horizontal forces, none can act on CB as there are no shear forces in a static fluid so the
forces would act on the faces AC and AB as shown below.

We can see that the horizontal force on AC, FAC , must equal and be in the opposite direction to the
resultant force RH  on the curved surface.

As AC is the projection of the curved surface AB onto a vertical plane, we can generalise this to say

The resultant horizontal force of a fluid above a curved surface is:

RH = Resultant force on the projection of the curved surface onto a vertical plane.

We know that the force on a vertical plane must act horizontally (as it acts normal to the plane) and that
RH  must act through the same point. So we can say

RH  acts horizontally through the centre of pressure of the projection of
the curved surface onto an vertical plane.
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Thus we can use the pressure diagram method to calculate the position and magnitude of the resultant
horizontal force on a two dimensional curved surface.

Vertical forces

The diagram below shows the vertical forces which act on the element of fluid above the curved surface.

There are no shear force on the vertical edges, so the vertical component can only be due to the weight of
the fluid. So we can say

The resultant vertical force of a fluid above a curved surface is:

RV = Weight of fluid directly above the curved surface.

and it will act vertically downward through the centre of gravity of the mass of fluid.

Resultant force

The overall resultant force is found by combining the vertical and horizontal components vectorialy,

Resultant force

R R RH V= +2 2

And acts through O at an angle of θ .

The angle the resultant force makes to the horizontal is

θ =






−tan 1 R

R
V

H

The position of O is the point of integration of the horizontal line of action of RH  and the vertical line of
action of RV .

What are the forces if the fluid is below the curved surface? This situation may occur or a curved sluice
gate for example. The figure below shows a situation where there  is a curved surface which is
experiencing fluid pressure from below.
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The calculation of the forces acting from the fluid below is very similar to when the fluid is above.

Horizontal force

From the figure below we can see the only two horizontal forces on the  area of fluid, which is in
equilibrium, are the horizontal reaction force which is equal and in the opposite direction to the pressure
force on the vertical plane A’B. The resultant horizontal force, RH acts as shown in the diagram. Thus we
can say:

The resultant horizontal force of a fluid below a curved surface is:

RH = Resultant force on the projection of the 

          curved surface on a vertical plane

Vertical force

The vertical force are acting are as shown on the figure below. If the curved surface were removed and the
area it were replaced by the fluid, the whole system would be in equilibrium. Thus the force required by
the curved surface to maintain equilibrium is equal to that force  which the fluid above the surface would
exert - i.e. the weight of the fluid.
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Thus we can say:

The resultant vertical force of a fluid below a curved surface is:

Rv =Weight of the imaginary volume of fluid vertically above the curved surface.

The resultant force and direction of application are calculated in the same way as for fluids above the
surface:

Resultant force

R R RH V= +2 2

And acts through O at an angle of θ .

The angle the resultant force makes to the horizontal is

θ =






−tan 1 R

R
V

H
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3. Fluid Dynamics
Objectives
• Introduce concepts necessary to analyse fluids in motion
• Identify differences between Steady/unsteady uniform/non-uniform compressible/incompressible flow
• Demonstrate streamlines and stream tubes
• Introduce the Continuity principle through conservation of mass and control volumes
• Derive the Bernoulli (energy) equation
• Demonstrate practical uses of the Bernoulli and continuity equation in the analysis of flow
• Introduce the momentum equation for a fluid
• Demonstrate how the momentum equation and principle of conservation of momentum is used to

predict forces induced by flowing fluids

This section discusses the analysis of fluid in motion - fluid dynamics. The motion of fluids can be
predicted in the same way as the motion of solids are predicted using the fundamental laws of physics
together with the physical properties of the fluid.

It is not difficult to envisage a very complex fluid flow. Spray behind a car; waves on beaches; hurricanes
and tornadoes or any other atmospheric phenomenon are all example of highly complex fluid flows which
can be analysed with varying degrees of success (in some cases hardly at all!). There are many common
situations which are easily analysed.

3.1 Uniform Flow, Steady Flow
It is possible - and useful - to classify the type of flow which is being examined into small number of
groups.

If we look at a fluid flowing under normal circumstances - a river for example - the conditions at one
point will vary from those at another point (e.g. different velocity) we have non-uniform flow. If the
conditions at one point vary as time passes then we have unsteady flow.

Under some circumstances the flow will not be as changeable as this. He following terms describe the
states which are used to classify fluid flow:

• uniform flow: If the flow velocity is the same magnitude and direction at every point in the fluid it is
said to be uniform.

• non-uniform: If at a given instant, the velocity is not the same at every point the flow is non-uniform.
(In practice, by this definition, every fluid that flows near a solid boundary will be non-uniform - as
the fluid at the boundary must take the speed of the boundary, usually zero. However if the size and
shape of the of the cross-section of the stream of fluid is constant the flow is considered uniform.)

• steady: A steady flow is one in which the conditions (velocity, pressure and cross-section) may differ
from point to point but DO NOT change with time.

• unsteady: If at any point in the fluid, the conditions change with time, the flow is described as
unsteady. (In practise there is always slight variations in velocity and pressure, but if the average
values are constant, the flow is considered steady.

Combining the above we can classify any flow in to one of four type:

1. Steady uniform flow. Conditions do not change with position in the stream or with time. An example is
the flow of water in a pipe of constant diameter at constant velocity.
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2. Steady non-uniform flow. Conditions change from point to point in the stream but do not change with
time. An example is flow in a tapering pipe with constant velocity at the inlet - velocity will change as
you move along the length of the pipe toward the exit.

3. Unsteady uniform flow. At a given instant in time the conditions at every point are the same, but will
change with time. An example is a pipe of constant diameter connected to a pump pumping at a
constant rate which is then switched off.

4. Unsteady non-uniform flow. Every condition of the flow may change from point to point and with time
at every point. For example waves in a channel.

If you imaging the flow in each of the above classes you may imagine that one class is more complex than
another. And this is the case - steady uniform flow is by far the most simple of the four. You will then be
pleased to hear that this course is restricted to only this class of flow. We will not be encountering any
non-uniform or unsteady effects in any of the examples (except for one or two quasi-time dependent
problems which can be treated at steady).

3.1.1 Compressible or Incompressible
All fluids are compressible - even water - their density will change as pressure changes. Under steady
conditions, and provided that the changes in pressure are small, it is usually possible to simplify analysis
of the flow by assuming it is incompressible and has constant density. As you will appreciate, liquids are
quite difficult to compress - so under most steady conditions they are treated as incompressible. In some
unsteady conditions very high pressure differences can occur and it is necessary to take these into account
- even for liquids. Gasses, on the contrary, are very easily compressed, it is essential in most cases to treat
these as compressible, taking changes in pressure into account.

3.1.2 Three-dimensional flow
Although in general all fluids flow three-dimensionally, with pressures and velocities and other flow
properties varying in all directions, in many cases the greatest changes only occur in two directions or
even only in one. In these cases changes in the other direction can be effectively ignored making analysis
much more simple.

Flow is one dimensional if the flow parameters (such as velocity, pressure, depth etc.) at a given instant in
time only vary in the direction of flow and not across the cross-section. The flow may be unsteady, in this
case the parameter vary in time but still not across the cross-section. An example of one-dimensional flow
is the flow in a pipe. Note that since flow must be zero at the pipe wall - yet non-zero in the centre - there
is a difference of parameters across the cross-section. Should this be treated as two-dimensional flow?
Possibly - but it is only necessary if very high accuracy is required. A correction factor is then usually
applied.

Pipe Ideal flow Real flow

One dimensional flow in a pipe.

Flow is two-dimensional if it can be assumed that the flow parameters vary in the direction of flow and in
one direction at right angles to this direction. Streamlines in two-dimensional flow are curved lines on a
plane and are the same on all parallel planes. An example is flow over a weir foe which typical
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streamlines can be seen in the figure below. Over the majority of the length of the weir the flow is the
same - only at the two ends does it change slightly. Here correction factors may be applied.

Two-dimensional flow over a weir.

In this course we will only be considering steady, incompressible one and two-dimensional flow.

3.1.3 Streamlines and streamtubes
In analysing fluid flow it is useful to visualise the flow pattern. This can be done by drawing lines joining
points of equal velocity - velocity contours. These lines are know as streamlines. Here is a simple
example of the streamlines around a cross-section of an aircraft wing shaped body:

Streamlines around a wing shaped body

When fluid is flowing past a solid boundary, e.g. the surface of an aerofoil or the wall of a pipe, fluid
obviously does not flow into or out of the surface. So very close to a boundary wall the flow direction
must be parallel to the boundary.

• Close to a solid boundary streamlines are parallel to that boundary

At all points the direction of the streamline is the direction of the fluid velocity: this is how they are
defined. Close to the wall the velocity is parallel to the wall so the streamline is also parallel to the wall.

It is also important to recognise that the position of streamlines can change with  time - this is the case in
unsteady flow. In steady flow, the position of streamlines does not change.

Some things to know about streamlines

• Because the fluid is moving in the same direction as the streamlines, fluid can not cross a streamline.

• Streamlines can not cross each other. If they were to cross this would indicate two different velocities
at the same point. This is not physically possible.

• The above point implies that any particles of fluid starting on one streamline will stay on that same
streamline throughout the fluid.

A useful technique in fluid flow analysis is to consider only a part of the total fluid in isolation from the
rest. This can be done by imagining a tubular surface formed by streamlines along which the fluid flows.
This tubular surface is known as a streamtube.
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A Streamtube

And in a two-dimensional flow we have a streamtube which is flat (in the plane of the paper):

A two dimensional version of the streamtube

The “ walls”  of a streamtube are made of streamlines. As we have seen above, fluid cannot flow across a
streamline, so fluid cannot cross a streamtube wall. The streamtube can often be viewed as a solid walled
pipe. A streamtube is not a pipe - it differs in unsteady flow as the walls will move with time. And it
differs because the “ wall”  is moving with the fluid

3.2 Flow rate.

3.2.1 Mass flow rate
If we want to measure the rate at which water is flowing along a pipe. A very simple way of doing this is
to catch all the water coming out of the pipe in a bucket over a fixed time period. Measuring the weight of
the water in the bucket and dividing this by the time taken to collect this water gives a rate of
accumulation of mass. This is know as the mass flow rate.

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg,
then:

mass flow rate m =
mass of fluid in bucket

time taken to collect the fluid
=

=
−

= −

&

. .

. / ( )

8 0 2 0

7
0857 1kg s kg s

Performing a similar calculation, if  we know the mass flow is 1.7kg/s, how long will it take to fill a
container with 8kg of fluid?
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time 
mass

mass flow rate
=

=

=

8

17
4 7
.
. s

3.2.2 Volume flow rate - Discharge.
More commonly we need to know the volume flow rate - this is more commonly know as discharge. (It is
also commonly, but inaccurately, simply called flow rate). The symbol normally used for discharge is Q.
The discharge is the volume of fluid flowing per unit time. Multiplying this by the density of the fluid
gives us the mass flow rate. Consequently, if the density of the fluid in the above example is
850 kg m3 then:

discharge,  Q
volume of fluid

time 
mass of fluid

density  time 

mass flow rate

density 

0.857

850 

=

=
×

=

=

=

= ×
=

−

−

0 001008

1008 10

1008

3 3 1

3 3

. / ( )

. /

. /

m s m s

m s

l s

An important aside about units should be made here:

As has already been stressed, we must always use a consistent set of units when applying values to
equations. It would make sense therefore to always quote the values in this consistent set. This set of units
will be the SI units. Unfortunately, and this is the case above, these actual practical values are very small
or very large (0.001008m3/s is very small). These numbers are difficult to imagine physically. In these
cases it is useful to use derived units, and in the case above the useful derived unit is the litre.
(1 litre = 1.0 × 10-3m3). So the solution becomes 1008. /l s . It is far easier to imagine 1 litre than  1.0 × 10-

3m3. Units must always be checked, and converted if necessary to a consistent set before using in an
equation.

3.2.3 Discharge and mean velocity.

If we know the size of a pipe, and we know the discharge, we can deduce the mean velocity

Discharge in a pipe
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If the area of cross section of the pipe at point X is A, and the mean velocity here is um . During a time t, a

cylinder of fluid will pass point X with a volume A× um ×t. The volume per unit time (the discharge) will
thus be

Q  
volume

time
=

Q

 =
A u t

t
Au

m

m

× ×

=

So if the cross-section area, A, is 12 10 3 2. × − m  and the discharge, Q is 24 l s/ , then the mean velocity, um ,
of the fluid is

u
Q

A

m s

m =

=
×
×

=

−

−

2 4 10

12 10
2 0

3

3

.

.

. /

Note how carefully we have called this the mean velocity. This is because the velocity in the pipe is not
constant across the cross section. Crossing the centreline of the pipe, the velocity is zero at the walls
increasing to a maximum at the centre then decreasing symmetrically to the other wall. This variation
across the section is known as the velocity profile or distribution. A typical one is shown in the figure
below.

A typical velocity profile across a pipe

This idea, that mean velocity multiplied by the area gives the discharge, applies to all situations - not just
pipe flow.

3.3 Continuity
Matter cannot be created or destroyed - (it is simply changed in to a different form of matter). This
principle is know as the conservation of mass and we use it in the analysis of flowing fluids.
The principle is applied to fixed volumes, known as control volumes (or surfaces), like that in the figure
below:

An arbitrarily shaped control volume.
For any control volume the principle of conservation of mass says
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Mass entering per unit time  =  Mass leaving per unit time + Increase of mass in the
control volume per unit time

For steady flow there is no increase in the mass within the control volume, so
For steady flow

Mass entering per unit time  =  Mass leaving per unit time

This can be applied to a streamtube such as that shown below. No fluid flows across the boundary made
by the streamlines so mass only enters and leaves through the two ends of this streamtube section.

A streamtube
We can then write

mass entering per unit time at end 1 =  mass leaving per unit time at end 2

1 2ρ δ ρ δA u A u1 1 2 2=
Or for steady flow,

ρ δ ρ δ1 2  ConstantA u A u m1 1 2 2= = = &

This is the equation of continuity.

The flow of fluid through a real pipe (or any other vessel) will vary due to the presence of a wall - in this
case we can use the mean velocity and write

ρ ρ1 2  ConstantA u A u mm m1 1 2 2= = = &

When the fluid can be considered incompressible, i.e. the density does not change, ρ1 = ρ2 = ρ so
(dropping the m subscript)

A u A u Q1 1 2 2= =  

This is the form of the continuity equation most often used.

This equation is a very powerful tool in fluid mechanics and will be used repeatedly throughout the rest
of this course.
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Some example applications
We can apply the principle of continuity to pipes with cross sections which change along their length.
Consider the diagram below of a pipe with a contraction:

Section 1 Section 2

A liquid is flowing from left to right and the pipe is narrowing in the same direction. By the continuity
principle, the mass flow rate must be the same at each section - the mass going into the pipe is equal to
the mass going out of the pipe. So we can write:

A u A u1 1 1 2 2 2ρ ρ=

(with the sub-scripts 1 and 2 indicating the values at the two sections)

As we are considering a liquid, usually water, which is not very compressible, the density changes very
little so we can say ρ ρ ρ1 2= = . This also says that the volume flow rate is constant or that

Discharge at section 1 =  Discharge at section 2

Q Q

A u A u
1 2

1 1 2 2

=
=

For example if the area A m1
3 210 10= × − and A m2

3 23 10= × − and the upstream mean velocity,
u m s1 2 1= . / , then the downstream mean velocity can be calculated by

u
A u

A

m s

2
1 1

2

7 0

=

= . /

Notice how the downstream velocity only changes from the upstream by the ratio of the two areas of the
pipe. As the area of the circular pipe is a function of the diameter we can reduce the calculation further,

u
A

A
u

d

d
u

d

d
u

d

d
u

2
1

2
1

1
2

2
2 1

1
2

2
2 1

1

2

2

1

4

4
= = =

=








π
π

/

/

Now try this on a diffuser, a pipe which expands or diverges as in the figure below,
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Section 1 Section 2

If the diameter at section 1 is d mm1 30=  and at section 2 d mm2 40=  and the mean velocity at section 2
is u m s2 30= . / . The velocity entering the diffuser is given by,

u

m s

1

240

30
3 0

53

= 





=

.

. /

Another example of the use of the continuity principle is to determine the velocities in pipes coming from
a junction.

Total mass flow into the junction = Total mass flow out of the junction
ρ1Q1 = ρ2Q2 + ρ3Q3

When the flow is incompressible (e.g. if it is water) ρ1 = ρ2 = ρ
Q Q Q

A u A u A u
1 2 3

1 1 2 2 3 3

= +
= +

If pipe 1 diameter = 50mm, mean velocity 2m/s, pipe 2 diameter 40mm takes 30% of total discharge and
pipe 3 diameter 60mm. What are the values of discharge and mean velocity in each pipe?

Q A u
d

u

m s

1 1 1

2

3

4

0 00392

= =








=

π

. /

Q Q m s

Q Q Q

Q Q Q Q

m s

2 1
3

1 2 3

3 1 1 1

3

03 0001178

03 0 7

000275

= =
= +
= − =

=

. . /

. .

. /

Q A u

u m s
2 2 2

2 0 936

=

= . /
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Q A u

u m s
3 3 3

3 0 972

=

= . /
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3.4 The Bernoulli Equation - Work and Energy
Work and energy
We know that if we drop a ball it accelerates downward with an acceleration g m s= 9 81 2. /  (neglecting
the frictional resistance due to air). We can calculate the speed of the ball after falling a distance h by the
formula v u as2 2 2= +  (a = g and s = h). The equation could be applied to a falling droplet of water as the
same laws of motion apply

A more general approach to obtaining the parameters of motion (of both solids and fluids) is to apply the
principle of conservation of energy. When friction is negligible the

sum of kinetic energy and gravitational potential energy is constant.

Kinetic energy =
1

2
2mv

Gravitational potential energy = m g h

(m is the mass, v is the velocity and h is the height above the datum).

To apply this to a falling droplet we have an initial velocity of zero, and it falls through a height of h.

Initial kinetic energy = 0

Initial potential energy = m g h

Final kinetic energy =
1

2
2mv

Final potential energy = 0

We know that

kinetic energy + potential energy = constant

so

Initial kinetic energy + Initial potential energy = Final kinetic energy + Final potential energy

mgh mv=
1

2
2

so

v gh= 2

Although this is applied to a drop of liquid, a similar method can be applied to a continuous jet of liquid.

The Trajectory of a jet of water
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We can consider the situation as in the figure above -  a continuous jet of water coming from a pipe with
velocity u1 . One particle of the liquid with mass m  travels with the jet and falls from height z1 to z2 . The
velocity also changes from u1  to u2 . The jet is travelling in air where the pressure is everywhere
atmospheric so there is no force due to pressure acting on the fluid. The only force which is acting is that
due to gravity. The sum of the kinetic and potential energies remains constant (as we neglect energy losses
due to friction) so

mgz mu mgz mu1 1
2

2 2
21

2

1

2
+ = +

As m is constant this becomes

1

2

1

21
2

1 2
2

2u gz u gz+ = +

This  will give a reasonably accurate result as long as the weight of the jet is large compared to the
frictional forces. It is only applicable while the jet is whole - before it breaks up into droplets.

Flow from a reservoir

We can use a very similar application of the energy conservation concept to determine the velocity of flow
along a pipe from a reservoir. Consider the ‘idealised reservoir’ in the figure below.

An idealised reservoir

The level of the water in the reservoir is z1 . Considering the energy situation - there is no movement of
water so kinetic energy is zero but the gravitational potential energy is mgz1 .

If a pipe is attached at the bottom water flows along this pipe out of the tank to a level z2 . A mass m  has
flowed from the top of the reservoir to the nozzle and it has gained a velocity u2 . The kinetic energy is

now 
1

2 2
2mu  and the potential energy mgz2 . Summarising

Initial kinetic energy = 0

Initial potential energy = m g z1

Final kinetic energy =
1

2 2
2mu

Final potential energy = mgz2

We know that

kinetic energy + potential energy = constant

so
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mgz mu mgz

mg z z mu

1 2
2

2

1 2 2
2

1

2
1

2

= +

+ =( )

so

u g z z2 1 22= −( )

We now have a expression for the velocity of the water as it flows from of a pipe nozzle at a height
( )z z1 2− below the surface of the reservoir. (Neglecting friction losses in the pipe and the nozzle).

Now apply this to this example: A reservoir of water has the surface at 310m above the outlet nozzle of a
pipe with diameter 15mm. What is the a) velocity, b) the discharge out of the nozzle and c) mass flow
rate. (Neglect all friction in the nozzle and the pipe).

u g z z

g

m s

2 1 22

2 310

78 0

= −

= × ×
=

( )

. /

Volume flow rate is equal to the area of the nozzle multiplied by the velocity

Q Au

m s

=

= × ×

=

( ) .

. /

.

π 0 015
4

3

2

78 0

0 01378

The density of water is 1000 3kg m/  so the mass flow rate is

mass flow rate  density volume flow rate = ×
=
= ×
=

ρQ

kg s

1000 0 01378

1378

.

. /

In the above examples the resultant pressure force was always zero as the pressure surrounding the fluid
was the everywhere the same - atmospheric. If the pressures had been different there would have been an
extra force acting and we would have to take into account the work done by this force when calculating
the final velocity.

We have already seen in the hydrostatics section an example of pressure difference where the velocities
are zero.

p1

z2

z1

p2
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The pipe is filled with stationary fluid of density ρ  has pressures p1  and p2  at levels z1  and z2

respectively. What is the pressure difference in terms of these levels?

p p g z z2 1 1 2− = −ρ ( )

or

p
gz

p
gz1

1
2

2ρ ρ+ = +

This applies when the pressure varies but the fluid is stationary.

Compare this to the equation derived for a moving fluid but constant pressure:

1

2

1

21
2

1 2
2

2u gz u gz+ = +

You can see that these are similar form. What would happen if both pressure and velocity varies?

3.4.1 Bernoulli’s Equation
Bernoulli’s equation is one of the most important/useful equations in fluid mechanics. It may be written,

p

g

u

g
z

p

g

u

g
z1 1

2

1
2 2

2

22 2ρ ρ+ + = + +

We see that from applying equal pressure or zero velocities we get the two equations from the section
above. They are both just special cases of Bernoulli’s equation.

Bernoulli’s equation has some restrictions in its applicability, they are:

•  Flow is steady;

•  Density is constant (which also means the fluid is incompressible);

•  Friction losses are negligible.

•  The equation relates the states at two points along a single streamline, (not conditions on two
different streamlines).

All these conditions are impossible to satisfy at any instant in time! Fortunately for many real situations
where the conditions are approximately satisfied, the equation gives very good results.

The derivation of Bernoulli’s Equation:

A

B

B’

A’

mg

z

Cross sectional area  a

An element of fluid, as that in the figure above, has potential energy due to its height z above a datum and
kinetic energy due to its velocity u. If the element has weight mg then
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potential energy = mgz

potential energy per unit weight = z

kinetic energy = 
1

2
2mu

kinetic energy per unit weight = 
u

g

2

2

At any cross-section the pressure generates a force, the fluid will flow, moving the cross-section, so work
will be done. If the pressure at cross section AB is p and the area of the cross-section is  a  then

force on AB = pa

when the mass mg of fluid has passed AB, cross-section AB will have moved to A’B’

volume passing AB = 
mg

g

m

ρ ρ=

therefore

distance AA’ = 
m

aρ

work done = force × distance AA’

      = pa
m

a

pm
× =ρ ρ

work done per unit weight = 
p

gρ

This term is know as the pressure energy of the flowing stream.

Summing all of these energy terms gives

Pressure 

energy per

unit weight

Kinetic

energy per

unit weight

Potential

energy  per

unit weight

Total

energy per

unit weight

+ + =

or

p

g

u

g
z Hρ + + =

2

2

As all of these elements of the equation have units of length, they are often referred to as the following:

pressure head = 
p

gρ

velocity head = 
u

g

2

2

potential head = z

total head = H
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By the principle of conservation of energy the total energy in the system does not change, Thus the total
head does not change. So the Bernoulli equation can be written

p

g

u

g
z H

ρ
+ + = =

2

2
Constant

As stated above, the Bernoulli equation applies to conditions along a streamline. We can apply it between
two points, 1 and 2, on the streamline in the figure below

Two points joined by a streamline

total energy per unit weight at 1  =  total energy per unit weight at 2

or

total head at 1 = total head at 2

or

p

g

u

g
z

p

g

u

g
z1 1

2

1
2 2

2

22 2ρ ρ+ + = + +

This equation assumes no energy losses (e.g. from friction) or energy gains (e.g. from a pump) along the
streamline. It can be expanded to include these simply, by adding the appropriate energy terms:

Total

energy per

unit weight at 1

Total

energy per unit

weight at 2

Loss 

per unit

weight

Work done

per unit

weight

Energy

supplied

per unit weight

= + + −

p

g

u

g
z

p

g

u

g
z h w q1 1

2

1
2 2

2

22 2ρ ρ+ + = + + + + −
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3.4.2 An example of the use of the Bernoulli equation.
When the Bernoulli equation is combined with the continuity equation the two can be used to find
velocities and pressures at points in the flow connected by a streamline.

Here is an example of using the Bernoulli equation to determine pressure and velocity at within a
contracting and expanding pipe.

A contracting expanding pipe

A fluid of constant density ρ = 960 kg m/ 3  is flowing steadily through the above tube. The diameters at

the sections are d mm d mm1 2100 80= =and . The gauge pressure at 1 is p kN m1
2200= / and the velocity

here is u m s1 5= / . We want to know the gauge pressure at section 2.

We shall of course use the Bernoulli equation to do this and we apply it along a streamline joining section
1 with section 2.

The tube is horizontal, with z1 = z2 so Bernoulli gives us the following equation for pressure at section 2:

p p u u2 1 1
2

2
2

2
= + −

ρ
( )

But we do not know the value of u2 . We can calculate this from the continuity equation: Discharge into
the tube is equal to the discharge out i.e.

A u A u

u
A u

A

u
d

d
u

m s

1 1 2 2

2
1 1

2

2
1

2

2

1

7 8125

=

=

=








= . /

So we can now calculate the pressure at section 2

p

N m

kN m

2

2

2

200000 1729687

182703

182 7

= −

=

=

.

/

. /

Notice how the velocity has increased while the pressure has decreased. The phenomenon - that pressure
decreases as velocity increases - sometimes comes in very useful in engineering. (It is on this principle
that carburettor in many car engines work - pressure reduces in a contraction allowing a small amount of
fuel to enter).
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Here we have used both the Bernoulli equation and the Continuity principle together to solve the problem.
Use of this combination is very common. We will be seeing this again frequently throughout the rest of
the course.

3.4.3 Pressure Head, Velocity Head, Potential Head and Total Head.
By looking again at the example of the reservoir with which feeds a pipe we will see how these different
heads relate to each other.

Consider the reservoir below feeding a pipe which changes diameter and rises (in reality it may have to
pass over a hill) before falling to its final level.

Reservoir feeding a pipe

To analyses the flow in the pipe we apply the Bernoulli equation along a streamline from point 1 on the
surface of the reservoir to point 2 at the outlet nozzle of the pipe. And we know that the total energy per
unit weight or the total head does not change - it is constant -  along a streamline. But what is this value
of this constant? We have the Bernoulli equation

p

g

u

g
z H

p

g

u

g
z1 1

2

1
2 2

2

22 2ρ ρ
+ + = = + +

We can calculate the total head, H, at the reservoir, p1 0=  as this is atmospheric and atmospheric gauge
pressure is zero, the surface is moving very slowly compared to that in the pipe so u1 0= , so all we are
left with is total head H z= = 1  the elevation of the reservoir.

A useful method of analysing the flow is to show the pressures graphically on the same diagram as the
pipe and reservoir. In the figure above the total head line is shown. If we attached piezometers at points
along the pipe, what would be their levels when the pipe nozzle was closed? (Piezometers, as you will
remember, are simply open ended vertical tubes filled with the same liquid whose pressure they are
measuring).

Piezometer levels with zero velocity

As you can see in the above figure, with zero velocity all of the levels in the piezometers are equal and the
same as the total head line. At each point on the line, when u = 0
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p

g
z Hρ + =

The level in the piezometer is the pressure head and its value is given by 
p

gρ .

What would happen to the levels in the piezometers (pressure heads) if the if water was flowing with
velocity = u? We know from earlier examples that as velocity increases so pressure falls …

Piezometer levels when fluid is flowing

p

g

u

g
z Hρ + + =

2

2

We see in this figure that the levels have reduced by an amount equal to the velocity head, 
u

g

2

2
. Now as

the pipe is of constant diameter we know that the velocity is constant along the pipe so the velocity head
is constant and represented graphically by the horizontal line shown. (this line is known as the hydraulic
grade line).

What would happen if the pipe were not of constant diameter? Look at the figure below where the pipe
from the example above is replaced be a pipe of three sections with the middle section of larger diameter

Piezometer levels and velocity heads with fluid flowing in varying diameter pipes

The velocity head at each point is now different. This is because the velocity is different at each point. By
considering continuity we know that the velocity is different because the diameter of the pipe is different.
Which pipe has the greatest diameter?

Pipe 2, because the velocity, and hence the velocity head, is the smallest.
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This graphical representation has the advantage that we can see at a glance the pressures in the system.
For example, where along the whole line is the lowest pressure head? It is where the hydraulic grade line
is nearest to the pipe elevation i.e. at the highest point of the pipe.

3.4.4 Energy losses due to friction.
In a real pipe line there are energy losses due to friction - these must be taken into account as they can be
very significant. How would the pressure and hydraulic grade lines change with friction? Going back to
the constant diameter pipe, we would have a pressure situation like this shown below

Hydraulic Grade line and Total head lines for a constant diameter pipe with friction

How can the total head be changing? We have said that the total head - or total energy per unit weight - is
constant. We are considering energy conservation, so if we allow for an amount of energy to be lost due to
friction the total head will change. We have seen the equation for this before. But here it is again with the
energy loss due to friction written as a head and given the symbol h f . This is often know as the head loss

due to friction.

p

g

u

g
z

p

g

u

g
z h f

1 1
2

1
2 2

2

22 2ρ ρ+ + = + + +
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3.5 Applications of the Bernoulli Equation
The Bernoulli equation can be applied to a great many situations not just the pipe flow we have been
considering up to now. In the following sections we will see some examples of its application to flow
measurement from tanks, within pipes as well as in open channels.

3.5.1 Pitot Tube
If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this:

Streamlines around a blunt body

Note how some move to the left and some to the right. But one, in the centre, goes to the tip of the blunt
body and stops. It stops because at this point the velocity is zero - the fluid does not move at this one
point. This point is known as the stagnation point.

From the Bernoulli equation we can calculate the pressure at this point. Apply Bernoulli along the central
streamline from a point upstream where the velocity is u1 and the pressure p1 to the stagnation point of the
blunt body where the velocity is zero, u2 = 0. Also z1 = z2.

p

g

u

g
z

p

g

u

g
z

p u p

p p u

1 1
2

1
2 2

2

2

1 1
2

2

2 1 1
2

2 2

2

1

2

ρ ρ

ρ ρ

ρ

+ + = + +

+ =

= +

This increase in pressure which bring the fluid to rest is called the dynamic pressure.

Dynamic pressure = 
1

2 1
2ρu

or converting this to head (using h
p

g
= ρ )

Dynamic head = 
1

2 1
2

g
u

The total pressure is know as the stagnation pressure (or total pressure)

Stagnation pressure = p u1 1
21

2
+ ρ

or in terms of head

Stagnation head = 
p

g g
u1

1
21

2ρ +
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The blunt body stopping the fluid does not have to be a solid. I could be a static column of fluid. Two
piezometers, one as normal and one as a Pitot tube within the pipe can be used in an arrangement shown
below to measure velocity of flow.

A Piezometer and a Pitot tube

Using the above theory, we have the equation for p2 ,

p p u

gh gh u

u g h h

2 1 1
2

2 1 1
2

2 1

1

2
1

2

2

= +

= +

= −

ρ

ρ ρ ρ

( )

We now have an expression for velocity obtained from two pressure measurements and the application of
the Bernoulli equation.
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3.5.2 Pitot Static Tube

The necessity of two piezometers and thus two readings make this arrangement a little awkward.
Connecting the piezometers to a manometer would simplify things but there are still two tubes. The Pitot
static tube combines the tubes and they can then be easily connected to a manometer. A Pitot static tube is
shown below. The holes on the side of the tube connect to one side of a manometer and register the static
head, (h1), while the central hole is connected to the other side of the manometer to register, as before, the
stagnation head (h2).

A Pitot-static tube

Consider the pressures on the level of the centre line of the Pitot tube and using the theory of the
manometer,

( )

( )

p p gX

p p g X h gh

p p

p gX p g X h gh

A

B man

A B

man

= +
= + − +
=

+ = + − +

2

1

2 1

ρ
ρ ρ

ρ ρ ρ

We know that p p p ustatic2 1 1
21

2
= = + ρ , substituting this in to the above gives

( )p hg p
u

u
gh

man

m

1 1
1
2

1

2

2

+ − = +

=
−

ρ ρ
ρ

ρ ρ
ρ

( )

The Pitot/Pitot-static tubes give velocities at points in the flow. It does not give the overall discharge of
the stream, which is often what is wanted. It also has the drawback that it is liable to block easily,
particularly if there is significant debris in the flow.
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3.5.3 Venturi Meter
The Venturi meter is a device for measuring discharge in a pipe. It consists of a rapidly converging section
which increases the velocity of flow and hence reduces the pressure. It then returns to the original
dimensions of the pipe by a gently diverging ‘diffuser’ section. By measuring the pressure differences the
discharge can be calculated. This is a particularly accurate method of flow measurement as energy loss are
very small.

A Venturi meter

Applying Bernoulli along the streamline from point 1 to point 2 in the narrow throat of the Venturi meter
we have

p

g

u

g
z

p

g

u

g
z1 1

2

1
2 2

2

22 2ρ ρ+ + = + +

By the using the continuity equation we can eliminate the velocity u2,

Q u A u A

u
u A

A

= =

=

1 1 2 2

2
1 1

2

Substituting this into and rearranging the Bernoulli equation we get
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p p

g
z z

u

g

A

A

u

g
p p

g
z z

A

A

1 2
1 2

1
2

1

2

2

1

1 2
1 2

1

2

2

2
1

2

1

−
+ − =
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=

−
+ −

















 −

ρ

ρ

To get the theoretical discharge this is multiplied by the area. To get the actual discharge taking in to
account the losses due to friction, we include a coefficient of discharge

Q u A

Q C Q C u A

Q C A A

g
p p

g
z z

A A

ideal

actual d ideal d

actual d

=
= =

=

−
+ −











−

1 1

1 1

1 2

1 2
1 2

1
2

2
2

2
ρ

This can also be expressed in terms of the manometer readings

p gz p gh g z h

p p

g
z z h

man

man

1 1 2 2

1 2
1 2 1

+ = + + −

−
+ − = −









ρ ρ ρ

ρ
ρ

ρ

( )

Thus the discharge can be expressed in terms of the manometer reading::

Q C A A

gh

A Aactual d

man

=
−









−1 2
1
2

2
2

2 1
ρ

ρ

Notice how this expression does not include any terms for the elevation or orientation (z1 or z2) of the
Venturimeter. This means that the meter can be at any convenient angle to function.

The purpose of the diffuser in a Venturi meter is to assure gradual and steady deceleration after the throat.
This is designed to ensure that the pressure rises again to something near to the original value before the
Venturi meter. The angle of the diffuser is usually between 6 and 8 degrees. Wider than this and the flow
might separate from the walls resulting in increased friction and energy and pressure loss. If the angle is
less than this the meter becomes very long and pressure losses again become significant. The efficiency of
the diffuser of increasing pressure back to the original is rarely greater than 80%.
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3.5.4 Flow Through A Small Orifice
We are to consider the flow from a tank through a hole in the side close to the base. The general
arrangement and a close up of the hole and streamlines are shown in the figure below

Tank and streamlines of flow out of the sharp edged orifice

The shape of the holes edges are as they are (sharp) to minimise frictional losses by minimising the
contact between the hole and the liquid - the only contact is the very edge.

Looking at the streamlines you can see how they contract after the orifice to a minimum value when they
all become parallel, at this point, the velocity and pressure are uniform across the jet. This convergence is
called the vena contracta. (From the Latin ‘contracted vein’). It is necessary to know the amount of
contraction to allow us to calculate the flow.

We can predict the velocity at the orifice using the Bernoulli equation. Apply it along the streamline
joining point 1 on the surface to point 2 at the centre of the orifice.

At the surface velocity is negligible (u1 = 0) and the pressure atmospheric (p1 = 0).At the orifice the jet is
open to the air so again the pressure is atmospheric (p2 = 0). If we take the datum line through the orifice
then z1 = h and z2 =0, leaving

h
u

g

u gh

=

=

2
2

2

2

2

This is the theoretical value of velocity. Unfortunately it will be an over estimate of the real velocity
because friction losses have not been taken into account. To incorporate friction we use the coefficient of
velocity to correct the theoretical velocity,

u C uactual v theoretical=

Each orifice has its own coefficient of velocity, they usually lie in the range( 0.97 - 0.99)

To calculate the discharge through the orifice we multiply the area of the jet by the velocity. The actual
area of the jet is the area of the vena contracta not the area of the orifice. We obtain this area by using a
coefficient of contraction for the orifice

A C Aactual c orifice=

So the discharge through the orifice is given by
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Q Au

Q A u

C C A u

C A u

C A gh

actual actual actual

c v orifice theoretical

d orifice theoretical

d orifice

=

=
=
=

= 2

Where Cd is the coefficient of discharge, and Cd = Cc × Cv

3.5.5 Time for a Tank to Empty
We now have an expression for the discharge out of a tank based on the height of water above the orifice.
It would be useful to know how long it would take for the tank to empty.

As the tank empties, so the level of water will fall. We can get an expression for the time it takes to fall by
integrating the expression for flow between the initial and final levels.

Tank emptying from level h1 to h2.

The tank has a cross sectional area of A. In a time dt the level falls by dh or the flow out of the tank is

Q Av

Q A
h

t

=

= −

δ
δ

(-ve sign as δh is falling)

Rearranging and substituting the expression for Q through the orifice gives

δ
δ

t
A

C A g

h

hd o

=
−

2

This can be integrated between the initial level, h1, and final level, h2, to give an expression for the time it
takes to fall this distance

[ ]

[ ]

t
A

C A g

h

h

A

C A g
h

A

C A g
h h

d o
h

h

d o
h

h

d o

=
−

=
−

=
−

−
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2

2
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2

1

2

2 1

δ
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3.5.6 Submerged Orifice
We have two tanks next to each other (or one tank separated by a dividing wall) and fluid is to flow
between them through a submerged orifice. Although difficult to see, careful measurement of the flow
indicates that the submerged jet flow behaves in a similar way to the jet in air in that it forms a vena
contracta below the surface. To determine the velocity at the jet we first use the Bernoulli equation to give
us the ideal velocity. Applying  Bernoulli from point 1 on the surface of the deeper tank to point 2 at the
centre of the orifice, gives

p

g

u

g
z

p

g

u

g
z

h
gh

g

u

g

u g h h

1 1
2

1
2 2

2

2

1
2 2

2

2 1 2

2 2

0 0
2

0

2

ρ ρ
ρ
ρ

+ + = + +

+ + = + +

= −( )

i.e. the ideal velocity of the jet through the submerged orifice depends on the difference in head across the
orifice. And the discharge is given by

Q C A u

C A g h h

d o

d o

=

= −2 1 2( )

3.5.7 Time for Equalisation of Levels in Two Tanks

Two tanks of initially different levels joined by an orifice

By a similar analysis used to find the time for a level drop in a tank we can derive an expression for the
change in levels when there is flow between two connected tanks.

Applying the continuity equation

Q A
h

t
A

h

t
Q t A h A h

= − =

= − =

1
1

2
2

1 1 2 2

δ
δ

δ
δ

δ δ δ

Also we can write − + =δ δ δh h h1 2

So
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− = −

=
+

A h A h A h

h
A h

A A

1 1 2 1 2

1
2

1 2

δ δ δ

δ
δ

Then we get

Q t A h

C A g h h t
A A

A A
hd o

δ δ

δ δ

= −

− =
+

1 1

1 2
1 2

1 2

2 ( )

Re arranging and integrating between the two levels we get
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h
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(remember that h in this expression is the difference  in height between the two levels (h2 - h1) to get the
time for the levels to equal use hinitial = h1 and hfinal = 0).

Thus we have an expression giving the time it will take for the two levels to equal.
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3.5.8 Flow Over Notches and Weirs
A notch is an opening in  the side of a tank or reservoir which extends above the surface of the liquid. It is
usually a device for measuring discharge. A weir is a notch on a larger scale - usually found in rivers. It
may be sharp crested but also may have a substantial width in the direction of flow - it is used as both a
flow measuring device and a device to raise water levels.

3.5.8.1 Weir Assumptions
We will assume that the velocity of the fluid approaching the weir is small so that kinetic energy can be
neglected. We will also assume that the velocity through any elemental strip depends only on the depth
below the free surface. These are acceptable assumptions for tanks with notches or reservoirs with weirs,
but for flows where the velocity approaching the weir is substantial the kinetic energy must be taken into
account (e.g. a fast moving river).

3.5.8.2 A General Weir Equation
To determine an expression for the theoretical flow through a notch we will consider a horizontal strip of
width b and depth h below the free surface, as shown in the figure below.

Elemental strip of flow through a notch

velocity through the strip,   

discharge through the strip,  

u gh

Q Au b h gh

=

= =

2

2δ δ

integrating from the free surface, h = 0 , to the weir crest, h H=  gives the expression for the total
theoretical discharge

Q g bh dh
H

theoretical = ∫2
1

2

0

This will be different for every differently shaped weir or notch. To make further use of this equation we
need an expression relating the width of flow across the weir to the depth below the free surface.

3.5.8.3 Rectangular Weir
For a rectangular weir the width does not change with depth so there is no relationship between b and
depth h. We have the equation,

b B= = constant 
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A rectangular weir

Substituting this into the general weir equation gives

Q B g h dh

B gH

H

theoretical =

=

∫2

2

3
2

1
2

0

3 2/

To calculate the actual discharge we introduce a coefficient of discharge, Cd , which accounts for losses at
the edges of the weir and contractions in the area of flow, giving

Q C B gHdactual =
2

3
2 3 2/

3.5.8.4 ‘V’ Notch Weir
For the “ V”  notch weir the relationship between width and depth is dependent on the angle of the “ V” .

“ V”  notch, or triangular, weir geometry.

If the angle of the “ V”  is θ  then the width, b, a depth h from the free surface is

( )b H h= − 



2

2
tan

θ

So the discharge is

( )Q g H h h dh

g Hh h

g H

H

H

theoretical tan
2

tan
2
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2

= 



 −

= 



 −
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And again, the actual discharge is obtained by introducing a coefficient of discharge

Q C g Hdactual tan
2

= 





8

15
2 5 2θ /
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3.6 The Momentum Equation
 We have all seen moving fluids exerting forces. The lift force on an aircraft is exerted by the air moving
over the wing. A jet of water from a hose exerts a force on whatever it hits. In fluid mechanics the
analysis of motion is performed in the same way as in solid mechanics - by use of Newton’s laws of
motion. Account is also taken for the special properties of fluids when in motion.

The momentum equation is a statement of Newton’s Second Law and relates the sum of the forces acting
on an element of fluid to its acceleration or rate of change of momentum. You will probably recognise the
equation F = ma which is used in the analysis of solid mechanics to relate applied force to acceleration. In
fluid mechanics it is not clear what mass of moving fluid we should use so we use a different form of the
equation.

Newton’s 2nd Law can be written:

The Rate of change of momentum of a body is equal to the resultant force acting on the body, and
takes place in the direction of the force.

To determine the rate of change of momentum for a fluid we will consider a streamtube as we did for the
Bernoulli equation,

We start by assuming that we have steady flow which is non-uniform flowing in a stream tube.

A streamtube in three and two-dimensions

In time δt  a volume of the fluid moves from the inlet a distance u tδ , so the volume entering the
streamtube in the time δt  is

volume entering the stream tube  =  area  distance =   × A u t1 1 δ

this has mass,

mass entering stream tube =  volume  density =  A u t1 1× ρ δ1

and momentum

momentum of fluid entering  stream tube =  mass  velocity =  A u t u1 1 1× ρ δ1

Similarly, at the exit, we can obtain an expression for the momentum leaving the steamtube:

momentum of fluid leaving  stream tube =   A u t u2 2 2ρ δ2
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We can now calculate the force exerted by the fluid using Newton’s 2nd Law. The force is equal to the rate
of change of momentum. So

Force =  rate of change of momentum

 F =
A u t u A u t u

t

( )ρ δ ρ δ
δ

2 2 2 2 1 1 1 1−

We know from continuity that Q A u A u= =1 1 2 2 ,  and if we have a fluid of constant density, i.e.
ρ ρ ρ1 2= = , then we can write

F Q u u= −ρ( )2 1

For an alternative derivation of the same expression, as we know from conservation of mass in a stream
tube that

mass into face 1  =   mass out of face 2

we can write

rate of change of mass = = = =&m
dm

dt
A u A uρ ρ1 1 1 2 2 2

The rate at which momentum leaves face 1 is

ρ2 2 2 2 2A u u mu= &

The rate at which momentum enters face 2 is

ρ1 1 1 1 1A u u mu= &

Thus the rate at which momentum changes across the stream tube is

ρ ρ2 2 2 2 1 1 1 1 2 1A u u A u u mu mu− = −& &

i.e.

Force =  rate of change of momentum

F m u u

F Q u u

= −
= −
& ( )

( )
2 1

2 1ρ

This force is acting in the direction of the flow of the fluid.

This analysis assumed that the inlet and outlet velocities were in the same direction - i.e. a one
dimensional system. What happens when this is not the case?

Consider the two dimensional system in the figure below:
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Two dimensional flow in a streamtube

At the inlet the velocity vector, u1 , makes an angle, θ1 , with the x-axis, while at the outlet u2  make an
angle θ2 . In this case we consider the forces by resolving in the directions of the co-ordinate axes.

The force in the x-direction

( )
( )

( )
( )

F

m u u

m u u

Q u u

Q u u

x

x x

x x

=
×

= −

= −

= −

= −

 Rate of change of momentum in x - direction

=  Rate of change of mass  change in velocity in x - direction

& cos cos

&

cos cos

2 2 1 1

2 1

2 2 1 1

2 1

θ θ

ρ θ θ

ρ

And the force in the y-direction

( )
( )

( )
( )

F m u u

m u u

Q u u

Q u u

y

y y

y y

= −

= −

= −

= −

& sin sin

&

sin sin

2 2 1 1

2 1

2 2 1 1

2 1

θ θ

ρ θ θ

ρ
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We then find the resultant force by combining these vectorially:

F F Fx yresultant = +2 2

And the angle which this force acts at is given by

φ =






−tan 1

F

F
y

x

For a three-dimensional (x, y, z) system  we then have an extra force to calculate and resolve in the z-
direction. This is considered in exactly the same way.

In summary we can say:

( )
( )

The total force the fluid =  rate of change of momentum through the control volume

out in

out in

exerted on 

F m u u

Q u u

= −

= −

&

ρ

Remember that we are working with vectors so F is in the direction of the velocity. This force is made up
of three components:

FR = Force exerted on the fluid by any solid body touching the control volume

FB = Force exerted on the fluid body (e.g. gravity)

FP = Force exerted on the fluid by fluid pressure outside the control volume

So we say that the total force, FT, is given by the sum of these forces:

F F F FT R B P= + +

The force exerted by the fluid on the solid body touching the control volume is opposite to FR . So the
reaction force, R, is given by

R FR= −
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3.7 Application of the Momentum Equation
We will consider the following examples:

1. Force due to the flow of fluid round a pipe bend.

2. Force on a nozzle at the outlet of a pipe.

3. Impact of a jet on a plane surface.

4. Force due to flow round a curved vane.

3.7.1 The force due the flow around a pipe bend

Consider a pipe bend with a constant cross section lying in the horizontal plane and turning through an
angle of θ

�

.

Flow round a pipe bend of constant cross-section

Why do we want to know the forces here? Because the fluid changes direction, a force (very large in the
case of water supply pipes,) will act in the bend. If the bend is not fixed it will move and eventually break
at the joints. We need to know how much force a support (thrust block) must withstand.

Step in Analysis:

1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force

4. Calculate the pressure force

5. Calculate the body force

6. Calculate the resultant force
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1.  Control Volume

The control volume is draw in the above figure, with faces at the inlet and outlet of the bend and
encompassing the pipe walls.

2 Co-ordinate axis system

It is convenient to choose the co-ordinate axis so that one is pointing in the direction of the inlet velocity.
In the above figure the x-axis points in the direction of the inlet velocity.

3 Calculate the total force

In the x-direction:

( )

( )

F Q u u

u u

u u

F Q u u

T x x x

x

x

T x

= −

=
=

= −

ρ

θ

ρ θ

2 1

1 1

2 2

2 1

cos

cos

In the y-direction:

( )F Q u u

u u

u u

F Qu

T y y y

y

y

T y

= −

= =

=

=

ρ

θ
ρ θ

2 1

1 1

2 2

2

0 0sin

sin

sin

4 Calculate the pressure force

F

F p A p A p A p A

F p A p A p A

P

P x

P y

=
= − = −
= − = −

pressure force at 1 -  pressure force at 2

1 1 2 2 1 1 2 2

1 1 2 2 2 2

0

0

cos cos cos

sin sin sin

θ θ
θ θ

5 Calculate the body force

There are no body forces in the x or y directions. The only body force is that exerted by gravity (which
acts into the paper in this example - a direction we do not need to consider).
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6 Calculate the resultant force

F F F F

F F F F
T x R x P x B x

T y R y P y B y

= + +
= + +

( )F F F Q u u p A p A

F F F Qu p A
R x T x P x

R y T y P y

= − − = − − +
= − − = +

0

0
2 1 1 1 2 2

2 2 2

ρ θ θ
ρ θ θ

cos cos

sin sin

And the resultant force on the fluid is given by

F F FR R x R y
= −2 2

And the direction of application is

φ =








−tan 1

F

F

R y

R x

the force on the bend is the same magnitude but in the opposite direction

R FR= −

3.7.2 Force on a pipe nozzle

Force on the nozzle at the outlet of a pipe. Because the fluid is contracted at the nozzle forces are induced
in the nozzle. Anything holding the nozzle (e.g. a fireman) must be strong enough to withstand these
forces.

The analysis takes the same procedure as above:

1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force

4. Calculate the pressure force

5. Calculate the body force

6. Calculate the resultant force

1 & 2 Control volume and Co-ordinate axis are shown in the figure below.
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Notice how this is a one dimensional system which greatly simplifies matters.

3 Calculate the total force

( )F F Q u uT T x
= = −ρ 2 1

By continuity, Q A u A u= =1 1 2 2 , so

F Q
A AT x

= −






ρ 2

2 1

1 1

4 Calculate the pressure force

F FP P x
= = pressure force at 1 -  pressure force at 2

We use the Bernoulli equation to calculate the pressure

p

g

u

g
z

p

g

u

g
z h f

1 1
1

2 2
22 2ρ ρ+ + = + + +

Is friction losses are neglected, h f = 0

the nozzle is horizontal, z z1 2=

and the pressure outside is atmospheric, p2 0= ,

and with continuity gives

p
Q

A A1

2

2
2

1
22

1 1
= −









ρ

5 Calculate the body force

The only body force is the weight due to gravity in the y-direction - but we need not consider this as the
only forces we are considering are in the x-direction.
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6 Calculate the resultant force

F F F F

F F F
T x R x P x B x

R x T x P y

= + +
= − − 0

F Q
A A

Q

A AT x
= −







 − −







ρ

ρ2

2 1

2

2
2

1
2

1 1

2

1 1

So the fireman must be able to resist the force of

R FT x
= −

3.7.3 Impact of a Jet on a Plane
We will first consider a jet hitting a flat plate (a plane) at an angle of 90°, as shown in the figure below.
We want to find the reaction force of the plate i.e. the force the plate will have to apply to stay in the same
position.

A perpendicular jet hitting a plane.
The analysis take the same procedure as above:

1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force

4. Calculate the pressure force

5. Calculate the body force

6. Calculate the resultant force
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1 & 2 Control volume and Co-ordinate axis are shown in the figure below.

3 Calculate the total force

( )F Q u u

Qu

T x x x

x

= −

= −

ρ
ρ

2 1

1

As the system is symmetrical the forces in the y-direction cancel i.e.

FT y
= 0

4 Calculate the pressure force.

The pressure force is zero as the pressure at both the inlet and the outlets to the control volume are
atmospheric.

5 Calculate the body force

As the control volume is small we can ignore the body force due to the weight of gravity.

6 Calculate the resultant force

F F F F

F F

Qu

T x R x P x B x

R x T x

x

= + +
= − −
= −

0 0

1ρ

Exerted on the fluid.

The force on the plane is the same magnitude but in the opposite direction

R FR x
= −
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3.7.4 Force on a curved vane
This case is similar to that of a pipe, but the analysis is simpler because the pressures are equal -
atmospheric , and both the cross-section and velocities (in the direction of flow) remain constant. The jet,
vane and co-ordinate direction are arranged as in the figure below.

Jet deflected by a curved vane.

1 & 2 Control volume and Co-ordinate axis are shown in the figure above.

3 Calculate the total force in the x direction

( )F Q u uT x
= −ρ θ2 1 cos

but u u
Q

A1 2= = , so

( )F
Q

AT x
= − −ρ θ

2

1 cos

and in the y-direction

( )F Q u

Q

A

T y
= −

=

ρ θ

ρ

2

2

0sin

4 Calculate the pressure force.

Again, the pressure force is zero as the pressure at both the inlet and the outlets to the control volume are
atmospheric.

5 Calculate the body force

No body forces in the x-direction, FB x
= 0.

In the y-direction the body force acting is the weight of the fluid. If V is the volume of the fluid on he
vane then,

F gVB x
= ρ
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(This is often small is the jet volume is small and sometimes ignored in analysis.)

6 Calculate the resultant force

F F F F

F F
T x R x P x B x

R x T x

= + +
=

F F F F

F F

T y R y P y B y

R y T y

= + +

=

And the resultant force on the fluid is given by

F F FR R x R y
= −2 2

And the direction of application is

φ =








−tan 1

F

F

R y

R x

exerted on the fluid.

The force on the vane is the same magnitude but in the opposite direction

R FR= −

3.7.5 Pelton wheel blade
The above analysis of impact of jets on vanes can be extended and applied to analysis of turbine blades.
One particularly clear demonstration of this is with the blade of a turbine called the pelton wheel. The
arrangement of a pelton wheel is shown in the figure below. A narrow jet (usually of water) is fired at
blades which stick out around the periphery of a large metal disk. The shape of each of these blade is such
that as the jet hits the blade it splits in two (see figure below) with half the water diverted to one side and
the other to the other. This splitting of the jet is beneficial to the turbine mounting - it causes equal and
opposite forces (hence a sum of zero) on the bearings.

Pelton wheel arrangement and jet hitting cross-section of blade.

A closer view of the blade and control volume used for analysis can be seen in the figure below.
Analysis again take the following steps:

1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force

4. Calculate the pressure force

5. Calculate the body force
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6. Calculate the resultant force

1 & 2 Control volume and Co-ordinate axis are shown in the figure below.

3 Calculate the total force in the x direction

( )

F
Q

u
Q

u Qu

u u

u u

F Q u u

T x x x x

x

x

T x

= + −





= −
=

= +

ρ

θ

ρ θ

2 22 2 1

1 1

2 2

2 1

cos

cos

and in the y-direction it is symmetrical, so

FT y
= 0

4 Calculate the pressure force.

The pressure force is zero as the pressure at both the inlet and the outlets to the control volume are
atmospheric.

5 Calculate the body force

We are only considering the horizontal plane in which there are no body forces.

6 Calculate the resultant force

( )

F F F F

F F

Q u u

T x R x P x B x

R x T x

= + +
= − −

= +

0 0

2 1ρ θcos

exerted on the fluid.

The force on the blade is the same magnitude but in the opposite direction
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R FR x
= −

So the blade moved in the x-direction.

In a real situation the blade is moving. The analysis can be extended to include this by including the
amount of momentum entering the control volume over the time the blade remains there. This will be
covered in the level 2 module next year.

3.7.6 Force due to a jet hitting an inclined plane
We have seen above the forces involved when a jet hits a plane at right angles. If the plane is tilted to an
angle the analysis becomes a little more involved. This is demonstrated below.

A jet hitting an inclined plane.

(Note that for simplicity gravity and friction will be neglected from this analysis.)

We want to find the reaction force normal to the plate so we choose the axis system as above so that is
normal to the plane. The diagram may be rotated to align it with these axes and help comprehension, as
shown below

Rotated view of the jet hitting the inclined plane.

We do not know the velocities of flow in each direction. To find these we can apply Bernoulli equation
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The height differences are negligible i.e. z1 = z2 = z3 and the pressures are all atmospheric = 0. So
. u1 = u2 = u3 = u

By continuity
Q1 = Q2 + Q3

u1A1 = u2A2 + u3A3

so
A1 = A2 + A3

Q1 = A1u

Q2 = A2u

Q3 = (A1 - A2)u

Using this we can calculate the forces in the same way as before.
1. Calculate the total force

2. Calculate the pressure force

3. Calculate the body force

4. Calculate the resultant force

1 Calculate the total force in the x-direction.

Remember that the co-ordinate system is normal to the plate.

( )F Q u Q u Q uT x x x x
= + −ρ ( )2 2 3 3 1 1

but u u
x x2 3 0= = as the jets are parallel to the plate with no component in the x-direction.

u u
x1 1= cosθ , so

F Q uT x
= −ρ θ1 1 cos

2. Calculate the pressure force

All zero as the pressure is everywhere atmospheric.

3.  Calculate the body force

As the control volume is small, hence the weight of fluid is small, we can ignore the body forces.

4. Calculate the resultant force
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F F F F

F F

Q u

T x R x P x B x

R x T x

= + +
= − −
= −

0 0

1 1ρ θcos

exerted on the fluid.

The force on the plate is the same magnitude but in the opposite direction

R F

Q u
R x

= −
= ρ θ1 1 cos

We can find out how much discharge goes along in each direction on the plate. Along the plate, in the y-
direction, the total force must be zero, FT y

= 0 .

Also in the y-direction: u u u u u u
y y y1 1 2 2 3 3= = = −sin , ,θ , so

( )
( )

F Q u Q u Q u

F Q u Q u Q u

T y y y y

T y

= + −

= − −

ρ

ρ θ

( )

sin

2 2 3 3 1 1

2 2 3 3 1 1

As forces parallel to the plate are zero,

0 2 2
2

3 3
2

1 1
2= − −ρ ρ ρ θA u A u A u sin

From above u u u1 2 3= =

0 2 3 1= − −A A A sinθ

and from above we have A A A1 2 3= +  so

( )
( ) ( )

0

1 1

1

1
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2 3
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So we know the discharge in each direction
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4. Real fluids
The flow of real fluids exhibits viscous effect, that is they tend to “ stick”  to solid surfaces and have
stresses within their body.

You might remember from earlier in the course Newtons law of viscosity:

τ ∝
du

dy

This tells us that the shear stress, τ, in a fluid is proportional to the velocity gradient - the rate of change of
velocity across the fluid path. For a “ Newtonian”  fluid we can write:

τ µ=
du

dy

where the constant of proportionality, µ, is known as the coefficient of viscosity (or simply viscosity). We
saw that for some fluids - sometimes known as exotic fluids - the value of µ changes with stress or
velocity gradient. We shall only deal with Newtonian fluids.

In his lecture we shall look at how the forces due to momentum changes on the fluid and viscous forces
compare and what changes take place.
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4.1 Laminar and turbulent flow
If we were to take a pipe of free flowing water and inject a dye into the middle of the stream, what would
we expect to happen?

This

this

or this

Actually both would happen - but for different flow rates. The top occurs when the fluid is flowing fast
and the lower when it is flowing slowly.

The top situation is known as turbulent flow and the lower as laminar flow.

In laminar flow the motion of the particles of fluid is very orderly with all particles moving in straight
lines parallel to the pipe walls.
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But what is fast or slow? And at what speed does the flow pattern change? And why might we want to
know this?

The phenomenon was first investigated in the 1880s by Osbourne Reynolds in an experiment which has
become a classic in fluid mechanics.

He used a tank arranged as above with a pipe taking water from the centre into which he injected a dye
through a needle. After many experiments he saw that this expression

ρ
µ
ud

where ρ = density, u = mean velocity, d = diameter and µ = viscosity

would help predict the change in flow type. If the value is less than about 2000 then flow is laminar, if
greater than 4000 then turbulent and in between these then in the transition zone.

This value is known as the Reynolds number, Re:

Re =
ρ

µ
ud

Laminar flow:  Re < 2000

Transitional flow: 2000 < Re < 4000

Turbulent flow: Re > 4000

What are the units of this Reynolds number? We can fill in the equation with SI units:
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ρ
µ

ρ
µ

= = =

= =

= = =

kg m u m s d m

Ns m kg ms

ud kg

m

m

s

m m

kg

/ , / ,

/ /

Re

3

2

3 1
1

i.e. it has no units. A quantity that has no units is known as a non-dimensional (or dimensionless)
quantity. Thus the Reynolds number, Re, is a non-dimensional number.

We can go through an example to discover at what velocity the flow in a pipe stops being laminar.

If the pipe and the fluid have the following properties:

water density ρ = 1000 kg/m3

pipe diameter d = 0.5m

(dynamic) viscosity, µ = 0.55x103 Ns/m2

We want to know the maximum velocity when the Re is 2000.

Re

.

.

. /

= =

= =
× ×

×
=

−

ρ
µ

µ
ρ

ud

u
d

u m s

2000

2000 2000 0 55 10

1000 0 5

0 0022

3

If this were a pipe in a house central heating system, where the pipe diameter is typically 0.015m, the
limiting velocity for laminar flow would be, 0.0733 m/s.

Both of these are very slow. In practice it very rarely occurs in a piped water system - the velocities of
flow are much greater. Laminar flow does occur in situations with fluids of greater viscosity - e.g. in
bearing with oil as the lubricant.

At small values of Re above 2000 the flow exhibits small instabilities. At values of about 4000 we can say
that the flow is truly turbulent. Over the past 100 years since this experiment, numerous more experiments
have shown this phenomenon of limits of Re for many different Newtonian fluids - including gasses.

What does this abstract number mean?

We can say that the number has a physical meaning, by doing so it helps to understand some of the
reasons for the changes from laminar to turbulent flow.
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Re =

=

ρ
µ
ud

inertial forces

viscous forces

It can be interpreted that when the inertial forces dominate over the viscous forces (when the fluid is
flowing faster and Re is larger) then the flow is turbulent. When the viscous forces are dominant (slow
flow, low Re) they are sufficient enough to keep all the fluid particles in line, then the flow is laminar.

In summary:

Laminar flow

• Re < 2000

• ‘low’ velocity

• Dye does not mix with water

• Fluid particles move in straight lines

• Simple mathematical analysis possible

• Rare in practice in water systems.

Transitional flow

• 2000 > Re < 4000

• ‘medium’ velocity

• Dye stream wavers in water - mixes slightly.

Turbulent flow

• Re > 4000

• ‘high’ velocity

• Dye mixes rapidly and completely

• Particle paths completely irregular

• Average motion is in the direction of the flow

• Cannot be seen by the naked eye

• Changes/fluctuations are very difficult to detect. Must use laser.

• Mathematical analysis very difficult - so experimental measures are used

• Most common type of flow.
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4.2 Pressure loss due to friction in a pipeline.
Up to this point on the course we have considered ideal fluids where there have been no losses due to
friction or any other factors. In reality, because fluids are viscous, energy is lost by flowing fluids due to
friction which must be taken into account. The effect of the friction shows itself as a pressure (or head)
loss.

In a pipe with a real fluid flowing, at the wall there is a shearing stress retarding the flow, as shown
below.

� � � � � � �
� � � � � � �

If a manometer is attached as the pressure (head) difference due to the energy lost by the fluid overcoming
the shear stress can be easily seen.

The pressure at 1 (upstream) is higher than the pressure at 2.

L

∆p

We can do some analysis to express this loss in pressure in terms of the forces acting on the fluid.

Consider a cylindrical element of incompressible fluid flowing in the pipe, as shown
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area A

το

το

τw

τw

The pressure at the upstream end is p, and at the downstream end the pressure has fallen by ∆p to (p-∆p).

The driving force due to pressure (F = Pressure x Area) can then be written

driving force = Pressure force at 1  - pressure force at 2

( )pA p p A p A p
d

− − = =∆ ∆ ∆
π 2

4

The retarding force is that due to the shear stress by the walls

= ×
×

shear stress  area over which it acts

= area of pipe wall

=
w

w

τ
τ πdL

As the flow is in equilibrium,

driving force = retarding force

∆

∆

p
d

dL

p
L

d

w

w

π
τ π

τ

2

4
4

=

=

Giving an expression for pressure loss in a pipe in terms of the pipe diameter and the shear stress at the
wall on the pipe.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

τw

τw

r

R

The shear stress will vary with velocity of flow and hence with Re. Many experiments have been done
with various fluids measuring the pressure loss at various Reynolds numbers. These results plotted to
show a graph of the relationship between pressure loss and Re look similar to the figure below:
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This graph shows that the relationship between pressure loss and Re can be expressed as

laminar

turbulent or  

∆

∆

p u

p u

∝

∝ 1 7 2 0. ( . )

As these are empirical relationships, they help in determining the pressure loss but not in finding the
magnitude of the shear stress at the wall 

τw on a particular fluid. If we knew τw we could then use it to
give a general equation to predict the pressure loss.

4.3 Pressure loss during laminar flow in a pipe
In general the shear stress τw. is almost impossible to measure. But for laminar flow it is possible to
calculate a theoretical value for a given velocity, fluid and pipe dimension.

In laminar flow the paths of individual particles of fluid do not cross, so the flow may be considered as a
series of concentric cylinders sliding over each other - rather like the cylinders of a collapsible pocket
telescope.

As before, consider a cylinder of fluid, length L, radius r, flowing steadily in the centre of a pipe.

r

δr

r

R

We are in equilibrium, so the shearing forces on the cylinder equal the pressure forces.
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τ π π

τ

2
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2r L p A p r

p

L

r

= =

=

∆ ∆
∆

By Newtons law of viscosity we have τ µ=
du

dy
, where y is the distance from the wall. As we are

measuring from the pipe centre then we change the sign and replace y with r distance from the centre,
giving

τ µ= −
du

dr

Which can be combined with the equation above to give

∆

∆

p

L

r du

dr
du

dr

p

L

r
2

2

= −

= −

µ

µ

In an integral form this gives an expression for velocity,

u
p

L
r dr= − ∫

∆ 1

2µ

Integrating gives the value of velocity at a point distance r from the centre

u
p

L

r
Cr = − +

∆ 2

4µ

At r = 0, (the centre of the pipe), u = umax, at r = R (the pipe wall) u = 0, giving

C
p

L

R
=

∆ 2

4µ

so, an expression for velocity at a point r from the pipe centre when the flow is laminar is

( )u
p

L
R rr = −

∆ 1

4
2 2

µ

Note how this is a parabolic profile (of the form y = ax2 + b ) so the velocity profile in the pipe looks
similar to the figure below

� � � � � � � � �

� � � � � � � � �
� � � � � � � � �

v

What is the discharge in the pipe?
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So the discharge can be written
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This is the Hagen-Poiseuille equation for laminar flow in a pipe. It expresses the discharge Q in terms of

the pressure gradient (
∂
∂
p

x

p

L
=

∆
), diameter of the pipe and the viscosity of the fluid.

We are interested in the pressure loss (head loss) and want to relate this to the velocity of the flow.
Writing pressure loss in terms of head loss hf, i.e.  p = ρghf

u
gh d

L

h
Lu

gd

f

f

=

=

ρ
µ

µ
ρ

2

2

32

32

This shows that pressure loss is directly proportional to the velocity when flow is laminar.

It has been validated many time by experiment.

It justifies two assumptions:

1. fluid does not slip past a solid boundary

2. Newtons hypothesis.
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4.4 Boundary Layers
(Recommended extra reading for this section: Fluid Mechanics by Douglas J F, Gasiorek J M, and
Swaffield J A. Longman publishers. Pages 327-332.)

When a fluid flows over a stationary surface, e.g. the bed of a river, or the wall of a pipe, the fluid
touching the surface is brought to rest by the shear stress τo at the wall. The velocity increases from the
wall to a maximum in the main stream of the flow.

� � � � � � �

umax

τozero velocity

Wall

Looking at this two-dimensionally we get the above velocity profile from the wall to the centre of the
flow.

This profile doesn’t just exit, it must build up gradually from the point where the fluid starts to flow past
the surface - e.g. when it enters a pipe.

If we consider a flat plate in the middle of a fluid, we will look at the build up of the velocity profile as
the fluid moves over the plate.

Upstream the velocity profile is uniform, (free stream flow) a long way downstream we have the velocity
profile we have talked about above. This is the known as fully developed flow. But how do we get to that
state?

This region, where there is a velocity profile in the flow due to the shear stress at the wall, we call the
boundary layer. The stages of the formation of the boundary layer are shown in the figure below:
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We define the thickness of this boundary layer as the distance from the wall to the point where the
velocity is 99% of the “ free stream”  velocity, the velocity in the middle of the pipe or river.

boundary layer thickness, δ = distance from wall to point where u = 0.99 umainstream

The value of δ will increase with distance from the point where the fluid first starts to pass over the
boundary - the flat plate in our example. It increases to a maximum in fully developed flow.

Correspondingly, the drag force D on the fluid due to shear stress τo
  at the wall increases from zero at the

start of the plate to a maximum in the fully developed flow region where it remains constant. We can
calculate the magnitude of the drag force by using the momentum equation. But this complex and not
necessary for this course.

Our interest in the boundary layer is that its presence greatly affects the flow through or round an object.
So here we will examine some of the phenomena associated with the boundary layer and discuss why
these occur.

4.4.1 Formation of the boundary layer
Above we noted that the boundary layer grows from zero when a fluid starts to flow over a solid surface.
As is passes over a greater length more fluid is slowed by friction between the fluid layers close to the
boundary. Hence the thickness of the slower layer increases.

The fluid near the top of the boundary layer is dragging the fluid nearer to the solid surface along. The
mechanism for this dragging may be one of two types:

The first type occurs when the normal viscous forces (the forces which hold the fluid together) are large
enough to exert drag effects on the slower moving fluid close to the solid boundary. If the boundary layer
is thin then the velocity gradient normal to the surface, (du/dy), is large so by Newton’s law of viscosity
the shear stress, τ = µ (du/dy), is also large. The corresponding force may then be large enough to exert
drag on the fluid close to the surface.

As the boundary layer thickness becomes greater, so the velocity gradient become smaller and the shear
stress decreases until it is no longer enough to drag the slow fluid near the surface along. If this viscous
force was the only action then the fluid would come to a rest.

It, of course, does not come to rest but the second mechanism comes into play. Up to this point the flow
has been laminar and Newton’s law of viscosity has applied. This part of the boundary layer is known as
the laminar boundary layer

The viscous shear stresses have held the fluid particles in a constant motion within layers. They become
small as the boundary layer increases in thickness and the velocity gradient gets smaller. Eventually they
are no longer able to hold the flow in layers and the fluid starts to rotate.

This causes the fluid motion to rapidly becomes turbulent. Fluid from the fast moving region moves to the
slower zone transferring momentum and thus maintaining the fluid by the wall in motion. Conversely,
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slow moving fluid moves to the faster moving region slowing it down. The net effect is an increase in
momentum in the boundary layer. We call the part of the boundary layer the turbulent boundary layer.

At points very close to the boundary the velocity gradients become very large and the velocity gradients
become very large with the viscous shear forces again becoming large enough to maintain the fluid in
laminar motion. This region is known as the laminar sub-layer. This layer occurs within the turbulent
zone and is next to the wall and very thin – a few hundredths of a mm.

4.4.2 Surface roughness effect
Despite its thinness, the laminar sub-layer can play a vital role in the friction characteristics of the surface.

This is particularly relevant when defining pipe friction - as will be seen in more detail in the level 2
module. In turbulent flow if the height of the roughness of a pipe is greater than the thickness of the
laminar sub-layer then this increases the amount of turbulence and energy losses in the flow. If the height
of roughness is less than the thickness of the laminar sub-layer the pipe is said to be smooth and it has
little effect on the boundary layer.

In laminar flow the height of roughness has very little effect

4.4.3 Boundary layers in pipes
As flow enters a pipe the boundary layer will initially be of the laminar form. This will change depending
on the ration of inertial and viscous forces; i.e. whether we have laminar (viscous forces high) or turbulent
flow (inertial forces high).

From earlier we saw how we could calculate whether a particular flow in a pipe is laminar or turbulent
using the Reynolds number.

Re =
ρ

µ
ud

(ρ = density u = velocity µ = viscosity d = pipe diameter)

Laminar flow:  Re < 2000

Transitional flow: 2000 < Re < 4000

Turbulent flow: Re > 4000



CIVE 1400: Fluid Mechanics Real Fluids: Laminar and Turbulent Flow 104

If we only have laminar flow the profile is parabolic – as proved in earlier lectures – as only the first part
of the boundary layer growth diagram is used. So we get the top diagram in the above figure.

If turbulent (or transitional), both the laminar and the turbulent (transitional) zones of the boundary layer
growth diagram are used.  The growth of the velocity profile is thus like the bottom diagram in the above
figure.

Once the boundary layer has reached the centre of the pipe the flow is said to be fully developed. (Note
that at this point the whole of the fluid is now affected by the boundary friction.)

The length of pipe before fully developed flow is achieved is different for the two types of flow. The
length is known as the  entry length.

Laminar flow entry length ≈120 × diameter

Turbulent flow entry length ≈ 60 × diameter
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4.4.4 Boundary layer separation

4.4.4.1 Convergent flows: Negative pressure gradients
If flow over a boundary occurs when there is a pressure decrease in the direction of flow, the fluid will
accelerate and the boundary layer will become thinner.

This is the case for convergent flows.

u1

p1

u2

p2

p1 > p2 u1 < u2 

The accelerating fluid maintains the fluid close to the wall in motion. Hence the flow remains stable and
turbulence reduces. Boundary layer separation does not occur.

4.4.4.2 Divergent flows: Positive pressure gradients
When the pressure increases in the direction of flow the situation is very different. Fluid outside the
boundary layer has enough momentum to overcome this pressure which is trying to push it backwards.
The fluid within the boundary layer has so little momentum that it will very quickly be brought to rest,
and possibly reversed in direction. If this reversal occurs it lifts the boundary layer away from the surface
as shown below.

u1

p1

u2

p2

p1 < p2 u1 > u2 
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This phenomenon is known as  boundary layer separation.

At the edge of the separated boundary layer, where the velocities change direction, a line of vortices occur
(known as a vortex sheet). This happens because fluid to either side is moving in the opposite direction.

This boundary layer separation and increase in the turbulence because of the vortices results in very large
energy losses in the flow.

These separating / divergent flows are inherently unstable and far more energy is lost than in parallel or
convergent flow.

4.4.4.3 A divergent duct or diffuser
The increasing area of flow causes a velocity drop (according to continuity) and hence a pressure rise
(according to the Bernoulli equation).

Increasing the angle of the diffuser increases the probability of boundary layer separation. In a Venturi
meter it has been found that an angle of about 6° provides the optimum balance between length of meter
and danger of boundary layer separation which would cause unacceptable pressure energy losses.
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4.4.4.4 Tee-Junctions

Assuming equal sized pipes, as fluid is removed, the velocities at 2 and 3 are smaller than at 1, the
entrance to the tee. Thus the pressure at 2 and 3 are higher than at 1. These two adverse pressure gradients
can cause the two separations shown in the diagram above.

4.4.4.5 Y-Junctions
Tee junctions are special cases of the Y-junction with similar separation zones occurring. See the diagram
below.

Downstream, away from the junction, the boundary layer reattaches and normal flow occurs i.e. the effect
of the boundary layer separation is only local. Nevertheless fluid downstream of the junction will have
lost energy.
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4.4.4.6 Bends

Two separation zones occur in bends as shown above. The pressure at b must be greater than at a as it
must provide the required radial acceleration for the fluid to get round the bend. There is thus an adverse
pressure gradient between a and b so separation may occur here.

Pressure at c is less than at the entrance to the bend but pressure at d has returned to near the entrance
value - again this adverse pressure gradient may cause boundary layer separation.

4.4.4.7 Flow past a cylinder
The pattern of flow around a cylinder varies with the velocity of flow. If flow is very slow with the
Reynolds number (ρ v diameter/µ) less than 0.5, then there is no separation of the boundary layers as the
pressure difference around the cylinder is very small. The pattern is something like that in the figure
below.

If 2 < Re < 70  then the boundary layers separate symmetrically on either side of the cylinder. The ends of
these separated zones remain attached to the cylinder, as shown below.
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Above a Re of 70 the ends of the separated zones curl up into vortices and detach alternately from each
side forming a trail of vortices on the down stream side of the cylinder. This trial in known as a Karman
vortex trail or  street. This vortex trail can easily be seen in a river by looking over a bridge where there
is a pier to see the line of vortices flowing away from the bridge. The phenomenon is responsible for the
whistling of hanging telephone or power cables. A more significant event was the famous failure of the
Tacoma narrows bridge. Here the frequency of the alternate vortex shedding matched the natural
frequency of the bridge deck and resonance amplified the vibrations until the bridge collapsed. (The
frequency of vortex shedding from a cylinder can be predicted. We will not try to predict it here but a
derivation of the expression can be found in many fluid mechanics text books.)

Looking at the figure above, the formation of the separation occurs as the fluid accelerates from the centre
to get round the cylinder (it must accelerate as it has further to go than the surrounding fluid). It reaches a
maximum at Y, where it also has also dropped in pressure. The adverse pressure gradient between here
and the downstream side of the cylinder will cause the boundary layer separation if the flow is fast
enough, (Re > 2.)
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4.4.4.8 Aerofoil
Normal flow over a aerofoil (a wing cross-section) is shown in the figure below with the boundary layers
greatly exaggerated.

The velocity increases as air it flows over the wing. The pressure distribution is similar to that shown
below so transverse lift force occurs.

If the angle of the wing becomes too great and boundary layer separation occurs on the top of the aerofoil
the pressure pattern will change dramatically. This phenomenon is known as stalling.

When stalling occurs, all, or most, of the ‘suction’ pressure is lost, and the plane will suddenly drop from
the sky! The only solution to this is to put the plane into a dive to regain the boundary layer. A transverse
lift force is then exerted on the wing which gives the pilot some control and allows the plane to be pulled
out of the dive.

Fortunately there are some mechanisms for preventing stalling. They all rely on preventing the boundary
layer from separating in the first place.
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1 Arranging the engine intakes so that they draw slow air from the boundary layer at the rear of the wing
though small holes helps to keep the boundary layer close to the wing. Greater pressure gradients can
be maintained before separation take place.

2 Slower moving air on the upper surface can be increased in speed by bringing air from the high
pressure area on the bottom of the wing through slots. Pressure will decrease on the top so the adverse
pressure gradient which would cause the boundary layer separation reduces.

 

3 Putting a flap on the end of the wing and tilting it before separation occurs increases the velocity over
the top of the wing, again reducing the pressure and chance of separation occurring.
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5. Dimensional Analysis

In engineering the application of fluid mechanics in designs make much of the use of empirical results
from a lot of experiments. This data is often difficult to present in a readable form. Even from graphs it
may be difficult to interpret. Dimensional analysis provides a strategy for choosing relevant data and how
it should be presented.

This is a useful technique in all experimentally based areas of engineering. If it is possible to identify the
factors involved in a physical situation, dimensional analysis can form a relationship between them.

The resulting expressions may not at first sight appear rigorous but these qualitative results converted to
quantitative forms can be used to obtain any unknown factors from experimental analysis.

5.1 Dimensions and units
Any physical situation can be described by certain familiar properties e.g. length, velocity, area, volume,
acceleration etc. These are all known as dimensions.

Of course dimensions are of no use without a magnitude being attached. We must know more than that
something has a length. It must also have a standardised unit - such as a meter, a foot, a yard etc.

Dimensions are properties which can be measured. Units are the standard elements we use to quantify
these dimensions.

In dimensional analysis we are only concerned with the nature of the dimension i.e. its quality not its
quantity. The following common abbreviation are used:

length = L

mass = M

time = T

force = F

temperature = Θ

In this module we are only concerned with L, M, T and F (not Θ). We can represent all the physical
properties we are interested in with L, T and one of M or F (F can be represented by a combination of
LTM). These notes will always use the LTM combination.
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The following table (taken from earlier in the course) lists dimensions of some common physical
quantities:

Quantity SI Unit Dimension

velocity m/s ms-1 LT-1

acceleration m/s2 ms-2 LT-2

force N

kg m/s2 kg ms-2 M LT-2

energy (or work) Joule J

N m,

kg m2/s2
kg m2s-2

ML2T-2

power Watt W

N m/s

kg m2/s3

Nms-1

kg m2s-3 ML2T-3

pressure ( or stress) Pascal P,

N/m2,

kg/m/s2

Nm-2

kg m-1s-2 ML-1T-2

density kg/m3 kg m-3 ML-3

specific weight N/m3

kg/m2/s2 kg m-2s-2

ML-2T-2

relative density a ratio

no units

1

no dimension

viscosity N s/m2

kg/m s

N sm-2

kg m-1s-1 M L-1T-1

surface tension N/m

kg /s2

Nm-1

kg s-2 MT-2

5.2 Dimensional Homogeneity

Any equation describing a physical situation will only be true if both sides have the same dimensions.
That is it must be dimensionally homogenous.

For example the equation which gives for over a rectangular weir (derived earlier in this module) is,

Q B gH=
2

3
2 3 2/

The SI units of the left hand side are m3s-1. The units of the right hand side must be the same. Writing the
equation with only the SI units gives
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( )m s m m s m

m s

3 1 2 1 2 3 2

3 1

− −

−

=

=

/ /

i.e. the units are consistent.

To be more strict, it is the dimensions which must be consistent (any set of units can be used and simply
converted using a constant). Writing the equation again in terms of dimensions,

( )L T L LT L

L T

3 1 2 1 2 3 2

3 1

− −

−

=

=

/ /

Notice how the powers of the individual dimensions are equal, (for L they are both 3, for T both -1).

This property of dimensional homogeneity can be useful for:

1. Checking units of equations;

2. Converting between two sets of units;

3. Defining dimensionless relationships (see below).

5.3 Results of dimensional analysis

The result of performing dimensional analysis on a physical problem is a single equation. This equation
relates all of the physical factors involved to one another. This is probably best seen in an example.

If we want to find the force on a propeller blade we must first decide what might influence this force.

It would be reasonable to assume that the force, F, depends on the following physical properties:

diameter, d

forward velocity of the propeller (velocity of the plane), u

fluid density, ρ

revolutions per second, N

fluid viscosity, µ

Before we do any analysis we can write this equation:

F = φ ( d, u, ρ, N, µ )

or

0 = φ1 ( F, d, u, ρ, N, µ )

where φ and φ1 are unknown functions.

These can be expanded into an infinite series which can itself be reduced to

F = Κ dm up ρθ Nr µσ

where K is some constant and m, p, q, r, s are unknown constant powers.

From dimensional analysis we
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1. obtain these powers

2. form the variables into several dimensionless groups

The value of K or the functions φ and φ1 must be determined from experiment. The knowledge of the
dimensionless groups often helps in deciding what experimental measurements should be taken.

5.4 Buckingham’s π theorems

Although there are other methods of performing dimensional analysis, (notably the indicial method) the
method based on the Buckingham π theorems gives a good generalised strategy for obtaining a solution.
This will be outlined below.

There are two theorems accredited to Buckingham, and know as his π theorems.

1st π theorem:

A relationship between m variables (physical properties such as velocity, density etc.) can be expressed as
a relationship between m-n non-dimensional groups of variables (called π groups), where n is the number
of fundamental dimensions (such as mass, length and time) required to express the variables.

So if a physical problem can be expressed:

φ ( Q1 , Q2 , Q3 ,… … … , Qm ) = 0

then, according to the above theorem, this can also be expressed

φ ( π1 , π2 , π3 ,… … … , Qm-n ) = 0

In fluids, we can normally take n = 3 (corresponding to M, L, T).

2nd π theorem

Each π group is a function of n governing or repeating variables plus one of the remaining variables.

5.5 Choice of repeating variables

Repeating variables are those which we think will appear in all or most of the π groups, and are a
influence in the problem. Before commencing analysis of a problem one must choose the repeating
variables. There is considerable freedom allowed in the choice.

Some rules which should be followed are

i. From the 2nd theorem there can be n  ( = 3) repeating variables.

ii. When combined, these repeating variables variable must contain all of dimensions (M, L, T)
(That is not to say that each must contain M,L and T).

iii. A combination of the repeating variables must not form a dimensionless group.

iv. The repeating variables do not have to appear in all π groups.

v. The repeating variables should be chosen to be measurable in an experimental investigation. They
should be of major interest to the designer. For example, pipe diameter (dimension L) is more useful
and measurable than roughness height (also dimension L).
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In fluids it is usually possible to take ρ, u  and d as the threee repeating variables.

This freedom of choice results in there being many different π groups which can be formed - and all are
valid. There is not really a wrong choice.

5.6 An example

Taking the example discussed above of force F induced on a propeller blade, we have the equation

0 = φ ( F, d, u, ρ, N, µ )

n = 3  and  m = 6

There are  m - n  =  3  π groups, so

φ ( π1 , π2 , π3 ) = 0

The choice of  ρ, u, d as the repeating variables satisfies the criteria above. They are measurable, good
design parameters and, in combination, contain all the dimension M,L and T. We can now form the three
groups according to the 2nd theorem,

π ρ1
1 1 1= a b cu d F π ρ2

2 2 2= a b cu d N π ρ µ3
3 3 3= a b cu d

As the π groups are all dimensionless i.e. they have dimensions M0L0T0  we can use the principle of
dimensional homogeneity to equate the dimensions for each π group.

For the first π group, π ρ1
1 1 1= a b cu d F

In terms of SI units ( ) ( ) ( )1 3 1 21 1 1= − − −kg m ms m kg ms
a b c

And in terms of dimensions

( ) ( ) ( )M L T M L L T L M LT
a b c0 0 0 3 1 21 1 1= − − −

For each dimension (M, L or T) the powers must be equal on both sides of the equation, so

for M: 0 = a1 + 1

a1 = -1

for L: 0 = -3a1 + b1 + c1 + 1

0 = 4 + b1 + c1

for T: 0 = -b1 - 2

b1 = -2

c1 = -4 - b1 = -2

Giving π1 as

π ρ

π ρ

1
1 2 2

1 2 2

=

=

− − −u d F

F

u d
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And a similar procedure is followed for the other π groups. Group π ρ2
2 2 2= a b cu d N

( ) ( ) ( )M L T M L LT L T
a b c0 0 0 3 1 11 1 1= − − −

For each dimension (M, L or T) the powers must be equal on both sides of the equation, so

for M: 0 = a2

for L: 0 = -3a2 + b2 + c2

0 =  b2 + c2

for T: 0 = -b2 - 1

b2 = -1

c2 = 1

Giving π2 as

π ρ

π

2
0 1 1

2

=

=

−u d N

Nd

u

And for the third, π ρ µ3
3 3 3= a b cu d

( ) ( ) ( )M L T M L LT L ML T
a b c0 0 0 3 1 1 13 3 3= − − − −

For each dimension (M, L or T) the powers must be equal on both sides of the equation, so

for M: 0 = a3 + 1

a3 = -1

for L: 0 = -3a3 + b3 + c3 -1

b3 + c3 = -2

for T: 0 = -b3 - 1

b3 = -1

c3 = -1

Giving π3 as

π ρ µ

π
µ

ρ

3
1 1 1

3

=

=

− − −u d

ud

Thus the problem may be described by the following function of the three non-dimensional π groups,

φ ( π1 , π2 , π3 ) = 0
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φ
ρ

µ
ρ

F

u d

Nd

u ud2 2 0, ,






 =

This may also be written:

F

u d

Nd

u udρ
φ

µ
ρ2 2 =







,

5.6.1 Wrong choice of physical properties.

If, when defining the problem, extra - unimportant - variables are introduced then extra π groups will be
formed. They will play very little role influencing the physical behaviour of the problem concerned and
should be identified during experimental work. If an important / influential variable was missed then a π
group would be missing. Experimental analysis based on these results may miss significant behavioural
changes. It is therefore, very important that the initial choice of variables is carried out with great care.

5.7 Manipulation of the π groups

Once identified manipulation of the π groups is permitted. These manipulations do not change the number
of groups involved, but may change their appearance drastically.

Taking the defining equation as: φ ( π1 , π2 , π3 … … …  πm-n ) = 0

Then the following manipulations are permitted:

i. Any number of groups can be combined by multiplication or division to form a new group which
replaces one of the existing. E.g. π1 and π2 may be combined to form π1a = π1 / π2 so the defining
equation becomes

φ ( π1a , π2 , π3 … … …  πm-n ) = 0

ii. The reciprocal of any dimensionless group is valid. So φ ( π1 ,1/ π2 , π3 … … …  1/πm-n ) = 0 is valid.

iii. Any dimensionless group may be raised to any power. So φ ( (π1 )
2, (π2 )

1/2, (π3 )
3… … …  πm-n ) = 0 is

valid.

iv. Any dimensionless group may be multiplied by a constant.

v. Any group may be expressed as a function of the other groups, e.g.
 π2  = φ ( π1 , π3 … … …  πm-n )

In general the defining equation could look like

φ ( π1 , 1/π2 ,( π3 )
i… … …  0.5πm-n ) = 0

5.8 Common π groups
During dimensional analysis several groups will appear again and again for different problems. These
often have names. You will recognise the Reynolds number ρud/µ. Some common non-dimensional
numbers (groups) are listed below.

Reynolds number Re =
ρ
µ
ud

inertial, viscous force ratio
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Euler number En =
p

uρ 2 pressure, inertial force ratio

Froude number Fn =
u

gd

2

inertial, gravitational force ratio

Weber number We =
ρ
σ
ud

inertial, surface tension force ratio

Mach number Mn =
u

c
Local velocity, local velocity of sound ratio

5.9 Examples

The discharge Q through an orifice is a function of the diameter d, the pressure difference p, the density ρ,

and the viscosity µ, show that Q
d p d p

=








2 1 2

1 2

1 2 1 2/

/

/ /

ρ
φ

ρ
µ

, where φ is some unknown function.

Write out the dimensions of the variables

 ρ: ML-3 u: LT-1

d: L µ: ML-1T-1

p:(force/area)  ML-1T-2

We are told from the question that there are 5 variables involved in the problem: d, p, ρ, µ and Q.

Choose the three recurring  (governing) variables; Q, d, ρ.

From Buckingham’s π theorem we have m-n = 5 - 3 = 2 non-dimensional groups.

( )
( )

φ ρ µ

φ π π

π ρ µ
π ρ

Q d p

Q d

Q d p

a b c

a b c

, , , ,

,

=

=

=

=

0

01 2

1

2

1 1 1

2 2 2

For the first group, π1:

( ) ( ) ( )M L T L T L ML ML T
a b c0 0 0 3 1 3 1 11 1 1= − − − −

M] 0 = c1
 + 1

c1 = -1

L] 0 = 3a1 + b1 - 3c1 - 1

-2 =  3a1 + b1

T] 0 = -a1 - 1

a1 = -1

b1 = 1

π ρ µ
µ

ρ

1
1 1 1=

=

− −Q d

d

Q
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And the second group  π2 :

(note p is a pressure (force/area) with dimensions ML-1T-2)

( ) ( ) ( )M L T L T L ML MT L
a b c0 0 0 3 1 3 2 11 1 1= − − − −

M] 0 = c2 + 1

 c2 = -1

L] 0 = 3a2 + b2 - 3c2 - 1

-2 =  3a2 + b2

T] 0 = -a2 - 2

a2 = - 2

b2 = 4

π ρ

ρ

2
2 4 1

4

2

=

=

− −Q d p

d p

Q

So the physical situation is  described by this function of non-dimensional numbers,

( )φ π π φ
µ
ρ ρ

µ
ρ φ

ρ

1 2

4

2

1

4

2

0, ,=






 =

=








d

Q

d p

Q

or

d

Q

d p

Q

The question wants us to show : Q
d p d p

=








2 1 2

1 2

1 2 1 2/

/

/ /

ρ
φ

ρ
µ

Take the reciprocal of square root of π2: 
1

2

1 2

2 1 2 2π
ρ

π= =
/

/

Q

d p a ,

Convert π1 by multiplying by this new group, π2a

π π π
µ
ρ

ρ µ
ρ1 1 2

1 2

2 1 2 1 2 1 2a a

d

Q

Q

d p d p
= = =

/

/ / /

then we can say

( )φ π π φ
ρ

µ ρ

ρ
φ

ρ
µ

1 01 2

1 2 1 2 2 1 2

1 2

2 1 2

1 2

1 2 1 2

/ , ,
/ / /

/

/

/

/ /

a a

d p d p

Q

or

Q
d p d p

=






 =

=
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5.10 Similarity
Hydraulic models may be either true or distorted models. True models reproduce features of the prototype
but at a scale - that is they are geometrically similar.

5.10.1 Geometric similarity

Geometric similarity exists between model and prototype if the ratio of all corresponding dimensions in
the model and prototype are equal.

L

L

L

L L
model

prototype

m

p

 = = λ

where λL is the scale factor for length.

For area

A

A

L

L L
model

prototype

m
2

p
2  = = λ2

All corresponding angles are the same.

5.10.2 Kinematic similarity

Kinematic similarity is the similarity of time as well as geometry. It exists between model and prototype

i. If the paths of moving particles are geometrically similar

ii. If the rations of the velocities of particles are similar

Some useful ratios are:

Velocity 
V

V

T

T
m

p

L

T
u

m

p

m

p

L

L
= = =

/

/

λ
λ

λ

Acceleration
a

a

L T

L T
m m

p p

L

T
a

m

p

= = =
/

/

2

2 2

λ
λ

λ

Discharge
Q

Q

L T

L T
m m

p p

L

T
Q

m

p

= = =
3

3

3/

/

λ
λ

λ

This has the consequence that streamline patterns are the same.

5.10.3 Dynamic similarity

Dynamic similarity exists between geometrically and kinematically similar systems if the ratios of all
forces in the model and prototype are the same.
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Force ratio
F

F

M a

M a

L

L
m m

p p

m m

p p

L

T
L

L

T
L u

m

p

= = × =






 =

ρ
ρ

λ
λ

λ λ
λ
λ

λ λ λρ ρ

3

3 2
2

2

2 2

This occurs when the controlling dimensionless group on the right hand side of the defining equation is
the same for model and prototype.

5.11 Models
When a hydraulic structure is build it undergoes some analysis in the design stage. Often the structures are
too complex for simple mathematical analysis and a hydraulic model is build. Usually the model is less
than full size but it may be greater. The real structure is known as the prototype. The model is usually
built to an exact geometric scale of the prototype but in some cases - notably river model - this is not
possible. Measurements can be taken from the model and a suitable scaling law applied to predict the
values in the prototype.

To illustrate how these scaling laws can be obtained we will use the relationship for resistance of a body
moving through a fluid.

The resistance, R,  is dependent on the following physical properties:

 ρ:  ML-3 u: LT-1 l:(length) L µ: ML-1T-1

So the defining equation is φ (R, ρ, u, l, µ ) = 0

Thus, m = 5, n = 3 so there are 5-3 = 2   π groups

π ρ1
1 1 1= a b cu l R π ρ µ2

2 2 2= a b cu d

For the π1 group ( ) ( ) ( )M L T M L L T L M LT
a b c0 0 0 3 1 21 1 1= − − −

Leading to π1 as

π
ρ1 2 2=

R

u l

For the π2 group ( ) ( ) ( )M L T M L LT L ML T
a b c0 0 0 3 1 1 13 3 3= − − − −

Leading to π1 as

π
µ

ρ2 =
ul

Notice how 1/π2 is the Reynolds number. We can call this π2a.

So the defining equation for resistance to motion is

φ ( π1 , π2a ) = 0

We can write
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R

u l

ul

R u l
ul

ρ φ
ρ
µ

ρ φ
ρ
µ

2 2

2 2

=








=








This equation applies whatever the size of the body i.e. it is applicable to a to the prototype and a
geometrically similar model. Thus for the model

R

u l

u lm

m m m

m m m

mρ
φ

ρ
µ2 2 =









and for the prototype

R

u l

u lp

p p p

p p p

pρ
φ

ρ
µ2 2 =











Dividing these two equations gives

( )
( )

R u l

R u l

u l

u l
m m m m

p p p p

m m m m

p p p p

/

/

/

/

ρ
ρ

φ ρ µ
φ ρ µ

2 2

2 2 =

At this point we can go no further unless we make some assumptions. One common assumption is to
assume that the Reynolds number is the same for both the model and prototype i.e.

ρ µ ρ µm m m m p p p pu l u l/ /=

This assumption then allows the equation following to be written

R

R

u l

u l
m

p

m m m

p p p

=
ρ
ρ

2 2

2 2

Which gives this scaling law for resistance force:

λ λ λ λρR u L= 2 2

That the Reynolds numbers were the same was an essential assumption for this analysis. The consequence
of this should be explained.

Re Rem p

m m m

m

p p p

p

u l u l

=

=
ρ

µ
ρ

µ

 

u

u

l

l
m

p

p

m

m

p

p

m

u
L

=

=

ρ
ρ

µ
µ

λ
λ

λ λ
µ

ρ

Substituting this into the scaling law for resistance gives
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λ λ
λ
λρ

µ

ρ
R =











2

So the force on the prototype can be predicted from measurement of the force on the model. But only if
the fluid in the model is moving with same Reynolds number as it would in the prototype. That is to say
the Rp can be predicted by

R
u l

u l
Rp

p p p

m m m
m=

ρ
ρ

2 2

2 2

provided that u
l

l
up

m

p

p

m

m

p
m=

ρ
ρ

µ
µ

In this case the model and prototype are dynamically similar.

Formally this occurs when the controlling dimensionless group on the right hand side of the defining
equation is the same for model and prototype. In this case the controlling dimensionless group is the
Reynolds number.

5.11.1 Dynamically similar model examples

Example 1

An underwater missile, diameter  2m and length 10m is tested in a water tunnel to determine the forces
acting on the real prototype. A 1/20th scale model is to be used. If the maximum allowable speed of the
prototype missile is 10 m/s, what should be the speed of the water in the tunnel to achieve dynamic
similarity?

For dynamic similarity the Reynolds number of the model and prototype must be equal:

Re Rem p

m p

ud ud

=







 =









ρ
µ

ρ
µ

So the model velocity should be

u u
d

dm p

p

m

p

m

m

p

=
ρ
ρ

µ
µ

As both the model and prototype are in water then, µm = µp and ρm = ρp so

u u
d

d
m sm p

p

m

= = =10
1

1 20
200

/
/

Note that this is a very high velocity. This is one reason why model tests are not always done at exactly
equal Reynolds numbers. Some relaxation of the equivalence requirement is often acceptable when the
Reynolds number is high. Using a wind tunnel may have been possible in this example. If this were the
case then the appropriate values of the ρ and µ ratios need to be used in the above equation.

Example 2
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A model aeroplane is built at 1/10 scale and is to be tested in a wind tunnel operating at a pressure of 20
times atmospheric. The aeroplane will fly at 500km/h. At what speed should the wind tunnel operate to
give dynamic similarity between the model and prototype? If the drag measure on the model is 337.5 N
what will be the drag on the plane?

From earlier we derived the equation for resistance on a body moving through air:

 ( )R u l
ul

u l=






 =ρ φ

ρ
µ

ρ φ2 2 2 2 Re

For dynamic similarity Rem  = Rep, so

u u
d

dm p

p

m

p

m

m

p

=
ρ
ρ

µ
µ

The value of µ does not change much with pressure so µm = µp

The equation of state for an ideal gas is p = ρRT . As temperature is the same then the density of the air in
the model can be obtained from

p

p

RT

RT

p

p

m

p

m

p

m

p

p

p

m

p

m p

= =

=

=

ρ
ρ

ρ
ρ

ρ
ρ

ρ ρ

20

20

So the model velocity is found to be

u u u

u km h

m p p

m

= =

=

1

20

1

1 10
0 5

250
/

.

/

The ratio of forces is found from

( )
( )

( ) ( )

R

R

u l

u l

R

R

m

p

m

p

m

p

=

= =

ρ
ρ

2 2

2 2

2 220

1

05

1

01

1
0 05

. .
.

So the drag force on the prototype will be

R R Np m= = × =
1

0 05
20 337 5 6750

.
.
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5.11.2 Models with free surfaces - rivers, estuaries etc.
When modelling rivers and other fluid with free surfaces the effect of gravity becomes important and the
major governing non-dimensional number becomes the Froude (Fn) number. The resistance to motion
formula above would then be derived with g as an extra dependent variables to give an extra π group. So
the defining equation is:

φ (R, ρ, u, l, µ, g ) = 0

From which dimensional analysis gives:

( )

R u l
ul u

gl

R u l

=








=

ρ φ
ρ
µ

ρ φ

2 2
2

2 2

,

Re,Fn

Generally the prototype will have a very large Reynolds number, in which case slight variation in Re
causes little effect on the behaviour of the problem. Unfortunately models are sometimes so small and the
Reynolds numbers are large and the viscous effects take effect. This situation should be avoided to
achieve correct results. Solutions to this problem would be to increase the size of the model - or more
difficult - to change the fluid (i.e. change the viscosity of the fluid) to reduce the Re.

5.11.3 Geometric distortion in river models
When river and estuary models are to be built, considerable problems must be addressed. It is very
difficult to choose a suitable scale for the model and to keep geometric similarity. A model which has a
suitable depth of flow will often be far to big - take up too much floor space. Reducing the size and
retaining geometric similarity can give tiny depth where viscous force come into play. These result in the
following problems:

i. accurate depths and depth changes become very difficult to measure;

ii. the bed roughness of the channel becomes impracticably small;

iii. laminar flow may result - (turbulent flow is normal in river hydraulics.)

The solution often adopted to overcome these problems is to abandon strict geometric similarity by having
different scales in the horizontal and the vertical. Typical scales are 1/100 in the vertical and between
1/200 and 1/500 in the horizontal. Good overall flow patterns and discharge characteristics can be
produced by this technique, however local detail of flow is not well modelled.

In these model the Froude number (u2/d) is used as the dominant non-dimensional number. Equivalence
in Froude numbers can be achieved between model and prototype even for distorted models. To address
the roughness problem artificially high surface roughness of wire mesh or small blocks is usually used.


