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The module comprises in chapter | the basic algebra review aiming to assess students skills

from their prior knowledge and at the same time providing them with the content they need to remediate
those skills.

Thus we will be able to tackle smoothly the chapters of Part I:
Linear Equations and Graphs; Functions-Graphs; Systems of Linear Equations-Matrices.
Determinants.

The Part Il is allocated to the Calculus and includes the following chapters:
Limits and the Derivative; Additional Derivative Topics; Graphing and Optimization and
Integration

The discussion and exploration of problems lead into new concepts and help students gain better
insight into the mathematical concepts through thought-provoking questions that are effective in
classroom. Thus Teacher will be able to easily craft homework assignments that best meet the needs
of students by taking advantage of the variety of types and difficulty levels of the exercises set at the end
of each Chapter.



PART I: LINEAR ALGEBRA.

The rules for manipulating and reasoning with symbols in algebra depend, in large measure, on
properties of the real numbers. In this section we look at some of the important properties of this
number system. To make our discussions here and elsewhere in the module clearer and more precise,
we occasionally make use of simple set concepts and notation.

CHAPTER I: SOME PREREQUISITE TOPICS

[.1: SET OF REAL NUMBERS.

Informally, a real number is any number that has a decimal representation. Table 1 describes the set
of real numbers and some of its important subsets. Figure 1 illustrates how these sets of numbers are
related. The set of integers contains all the natural numbers and something else—their negatives and 0.
The set of rational numbers contains all the integers and something else—non integer ratios of integers.
And the set of real numbers contains all the rational numbers and something else—irrational numbers.

TABLE 1: REAL NUMBERS

SYMBOL NAME DESCRIPTION EXAMPLES
N NATURAL NUMBERS. COUNTING NUMBERS (ALSO 1,23, ...
CALLED POSITIVE INTEGERS)
7 INTEGERS NATURAL THEIR NEGATIVES, AND 0 vy 2,+1,0,1,2, ...
NUMBERS
RATIONAL NUMBERS NUMBERS

THAT CAN BE REPRESENTED AS _4,0,1,25,‘?3 3.67, ]
A/B, WHERE A AND B ARE

INTEGERS AND B= 0 DECIMAL 0.333,5.272727
REPRESENTATIONS ARE
REPEATING OR TERMINATING
NUMBERS THAT CAN BE
REPRESENTED AS NONREPEATING | vZ, T,

AND NONTERMINATING DECIMAL | 3/7.1.414213,2.71828182
NUMBERS

REAL NUMBERS RATIONAL AND IRRATIONAL
NUMBERS

Q RATIONAL NUMBERS

1 IRRATIONAL NUMBERS

.2: REAL NUMBER LINE

A one-to-one correspondence exists between the set of real numbers and the set of points
on a line. That is, each real number corresponds to exactly one point, and each point corresponds to
exactly one real number. A line with a real number associated with each point, and vice versa, as shown
in figure 1, is called a real number line, or simply a real line. Each number associated with a point is
called the coordinate of the point:

—10 [ —."II .-:] 5 [ 10

1.3.BASIC REAL NUMBER PROPERTIES



In mathematics, we often have to perform some or all of the four major operations of arithmetic
on real numbers. These are addition (+), subtraction (=), multiplication (x) and division (). There are
simple rules and conventions which we need to observe:

(a) Operations within brackets are performed first.

(b) If there are no brackets to indicate priority, then multiplication and division take precedence
over addition and subtraction.

(c) Addition and subtraction are performed in their order of appearance.
(d) Multiplication and division are performed in their order of appearance.

(e) A number of additions can be performed in any order. For any real numbers a, b, c ER, we
have :

at(b+tc)=(at+b)+canda+b=b+a.

Example 1.3.1. We have -3 x4 -5+ (-3) =-(3 x4) - 5+ (-3) = -12 - 5 -3 = -20. Note that we have
recognized that 3 x 4 takes precedence over the - signs.

Example 1.3.2. We have
21+32 + (-4) +(-6) =21 + (32 + (-4)) + (-6) = 21 + (-8) + (-6)
=21-8-6=(21-8)-6=13-6=7.

Note that we have recognized that 32 + (-4) takes precedence over the + signs, and that 21 - 8 takes
precedence over the following - sign. Note that we have recognized that 32 + (-4) takes precedence
over the + signs, and that 21 - 8 takes precedence over the following - sign.

Example 1.3.3. We have (366+(-6)-(-6))+(-11) = ((-61)-(-6))+(-11) = (-55)+(-11) = 5.Note that the
division by -11 is performed last because of brackets.

Example 1.3.4. We have 720 + (-9) + 4 x (-2) = (-80) + 4 x (-2) = (-20) x (-2) = 40.

Example 1.3.5. Convince yourself that (76 +2 - (-2) x 9+ 4 x 8) +4 +2 - (10 - 3 x 3) - 6 = 4. Another
operation on real numbers that we perform frequently is taking square roots:

Suppose that a = 0. We say that x is a square root of a if x2= a.

Remarks. (1) If a > 0, then there are two square roots of a. We denote by

\a the positive square root of a, and by —Va the negative square root of a.

(2) If a = 0, then there is only one square root of a. We have

V0 =0.

(3) Note that square root of a is not defined when a < 0. If x is a real number, then x2= 0 and

so cannot be equal to any real negative number a.

Example 1.3.6. We have V(M6 +2—(-2)x9+4x8)+4+2—-(10-3x3)—6=2.



Example 1.2.7. We havev27 = 3 x v/ 3. To see this, note that
(3xV3)2=3xV3x3xV3=3x3xV3xV3=3x3x3=27

Example 1.3.7.  Wehavev72=v2x2x2x3x3=2x3xv2=6x2
1.4. DISTRIBUTIVE LAWS.

We now consider the distribution of multiplication inside brackets. For convenience, we usually suppress
the multiplication sign x, and write ab to denote the product a x b. For every a,b,c,d €R, we have

(@a)a(b+c)=ab+ac;
(b) (@ + b)c = ac + bc; and
(c)(@a+b)(c+d)=ac+ad+bc+bd.

Special cases of part (c) above include the following two laws.

*LAWS ON SQUARES:
For every a,b €R, we have

(@) (a+b)2=a?+2ab+b?
(b) (a—b)* =a* — 2ab+*
(c) a®> —b* = (a—b)(a+D)
*LAWS ON CUBES

(a) a® - b®=(a - b)(a2+ ab + b?); and
(b) @® + b* = (a + b)(a2 - ab + b?).

:and

Example 1.4.1. Consider the expression (2x+5)2-(x+5)2. Using part (a) on the Laws on squares, we have

(2x +5)2=4x2+ 20x + 25 and (x + 5)2= x2+ 10x + 25. It follows that
(2x + 5)2= (x + 5)2= (4x2+ 20x + 25) = (x2+ 10x + 25) = 4x2+ 20x + 25
- x2- 10x - 25 = 3x2+ 10x.

Example 1.4.2. Consider the expression (x - y)(x + y - 2) + 2x. Using an extended version of part (c) of
the Distributive laws, we have

(X=Y)(Xx+y=2)=x2+Xy=-2X-Xy - y2+2y=x2-2x-y2+2y.

It follows that

(X=Y)(x+y=2)+2x=(x2=2x - y2+ 2y) + 2X = X2= 2x — y2+ 2y + 2X = X2— y2 + 2y.



Alternatively, we have
(—y)zt+y—-2)+2z=(z-y)((r+y)-2)+2z=(z—y)(z+y) - 2xr—y) + 2
=a2? -y’ — (22 —2y) + 22 = 22—y — 2+ 2y + 20 = 2% — 4% + 2y

Example 1.4.3. We have

(z+1D)(x-2)(z+3)=(@*-20+2—-2)(x+3)=(2? —2—2)(x+3)
=23 4322 — 2?2 — 32 —22 —6=2+22° — 52 — G,

Example 1.4.4 :
We have (5x + 3)2- (2x = 3)2+ (3x - 2)(3x + 2)= (25x2 + 30x + 9) - (4x2—- 12x + 9) + (9Ix2- 4)
=25x2+ 30x + 9 - 4x2+ 12x - 9 + 9x2- 4 = 30x2 + 42x - 4.

1.5.  ARITHMETIC OF FRACTIONS

Suppose that we wish to add or substract two fractions:
%+ 2 or % — 2 where a,b,c,d €Z with b # 0 and d # 0. For convenience, we have relaxed the
requirement that b and d are positive integers.

We have:
a ¢ ad be ad-+be a ¢ ad be ad-—be

5t3= — z —

(f7m+m7 bd and b d bd bd  bd

In both cases, we first rewrite the fractions with a common denominator, and then perform addition or
subtraction on the numerators. Where possible, we may also perform some cancellation to the answer.

Example 1.5.1.  Following the rules precisely, we have

']+]_6+3_6+3_.0 1
3 6 18 18 18 18 2.

However, we can somewhat simplify the argument by using the lowest common denominator instead of the
product of the denominators, and obtain

1

2 1 2+1 3
>+

1 1
3°6 66 6 6 2.

The next few examples may involve ideas discussed in the previous sections. The reader is advised
to try to identify the use of the various laws discussed earlier.

Example 1.5.2  Consider the expression

Here the denominators are the same, so we need only perform subtraction on the numerators. We have



(x—4)?2 (r+2)?2 (z—4)2%—(x+2)? _ (22 — 82 + 16) — (22 + 4x + 4)

(x+4)2 (r+4)2 (z +4)2 (z +4)2
ot —8r4+16—a?—dr—4  12—12z
N (z+4)2 (2 44)27

Example 1.5.3.We have

3(z—1) 2x+1) 3x-1) 2x+1)2 3@-1)242(x+1)?
x+1 r—1  (z4+1)(z-1) (z+1(x-1) (z+1)(z—1)
3a? -2 4+1)+22* +224+1)  (32% — 62+ 3) + (222 + 42+ 2)
- 2 —1 - 2?2 — 1
32 —6r+3+207 +42+2  S2?—22+5
n 2 -1 o221

Example 1.5.4. We have

x r  z(x+y) yr w4 y)—yr 2P +ay—yxr 2*4ay—zy  2?

y 4y ylzt+y) gty yiz+y)  yl+y)  yl+y) oyl +y),

Example 1.5.5. We have
P4 __p ¢ _pt(t9)_poa_
pP—q q-p p—q pP—gq pP—q pP—q
Note here that the two denominators are essentially the same, apart from a sign change. Changing the sign
of both the numerator and denominator of one of the fractions has the effect of giving two fractions with the
same denominator.

1

Example 1.5.6.  We have
4 2 4a+2) 2 4a+2)-2 (4a+8)—2 4a+8-2 4da+6

a ala+2) ala+2) ala+2) ala+2)  ala+2)  ale+2)  ala+2)

Note here that the common denominator is not the product of the two denominators, since we have
observed the common factor a in the two denominators. If we do not make this observation, then we have
4 2 da(a + 2) 2a da(a+2)—2a (4a® +8a) — 2a
a  ala+2) - a2(a+2) a2(a+2) T @+ 2) T 2+t 2)

_4da®+8a—2a  4a’+6a  a(da+6)  da+6

a?(a + 2) a(a+2) a?(a+2) ala+2)

Note that the common factor a is cancelled from the numerator and denominator in the last step. We still
have the same answer, but a little extra work is required.

Suppose next that we wish to multiply two fractions and consider:
a C ac

b d T bd,
where a,b,c,d €eZwithb+# 0 and d # 0

0] C ac

b d T b
We simply multiply the numerators and denominators separately. Where possible, we may
alsoperform some cancellation to the answer.



Example 1.5.7. We have

h 1 h _h fxz+h h _ixa?—l—h—h_ix r hx B h
x? z+h) a2 \az+h z+h) 22 r+h 22 x+h  22(x+h)  x(z+h)

Example 1.5.8. We have

1 1 1 T Y+ x T+ 1 T+ 1 4 1y)?
Ty Ty  xy Ty Ty 1 Ty

Example 1.5.9. We have
1 1 1 (v T 1 _y-z 1 y-z  —(r-y) 1
r y)r—y \zy xy)r—y axy r—y aylr—y) azylr—y)  xy

Example 1.5.10. We have
b—c b? b (b —c) B2b—c) 1

be P —be be(b? — be) - b2e(b—¢) - ¢

Example 1.5.11. We have
a? a+1 a*(a+1) a’(a+1) a

2-1" "4 S ala2-1) ala—1)(a+1) a—1

Example 1.5.12. We have

x4y 6y —3z  (r+y)(6y—3z) 3(x+y)(2y — ) B 3
a? —dy? T 2042y (22 —4y?)(20 +2y) 20 -2y)(e+2y)(z+y) 20z +2y),

Suppose finally that we wish to divide one fraction by another and consider:
(a/b) a ¢ a d ad

(c/d) b d b e be

where a,b,c,d €Z with b# 0 and d # 0.In other words, we invert the divisor and then perform
multiplication instead. Where possible, we may also perform some cancellation to the answer. Note the
special cases that

(a/b) a a _ad

"¢ be and (¢/d) e,

Example 1.5.13. We have

1 4 14z 1 4 l+2+1 4
14+a 5(1+z) l+2 1+ 5(1+4x) 1+ 5(1+x)

24 4 24z 5(1+2)
Itz B5(1+2) 1+z . 4
524 2)(14+x)  5(2+x)
41 +2) 4
Example 1.5.14. We have
6a ~ a+5 6a a’? — 25 6a(a’® — 25) 6a(a® — 25)
a—5 &2—2 a=5" aths (a—5)(a+5) T T a2-25 = ba.



Example 1.5.15. We have

ff. - % 1 1 ( ) Y T » 1 y—x » 1 y—x 1
— ===+ (r—-y)=|— - — =- = =——
r—=y r oy Y ry - xyY r—y Ty r—y aylr—y) ry,

Example 1.5.16. We have

2?2 —y? . 11 L . " R
e (_+_> =(2® — %) =+ (i+ I ) — @2yt s L2

T+32 oy vy ay y

_ (.132 B yg) » Ty _ .'I".ff'(;}-z - ;r;‘z) _ xy(r —y)(x +y) = ay(z —y).
T+ r+y Tr+y

1.1.5: FACTORIZATION

Very often, we have to handle mathematical expressions that can be simplified. We have seen a few
instances of cancellation of common terms in the numerator and denominator of fractions. We now
consider the question of factorization. This can be thought of as the reverse process of expansion. It is
difficult, if not impossible, to write down rules for factorization. Instead, we shall look at a few examples,
and illustrate some of the ideas.

Example 1.1.5.1. Consider the expression x3 - x. First of all, we recognize that both terms x3and x have a
factor x. Hence we can write x3 - x = x(x2 - 1), using one of the Distributive laws. Next, we realize that we
can apply one of the Laws on squares on the factor x2- 1. Hence

XB=x=x(x=1)=x(x-1)(x+1).

Example 1.1.5.2. Consider the expression a*- b*. Note that we can apply one of the Laws on squares to
obtain a* - b*= (a2 - b?)(a% + b?). We can again apply one of the Laws on squares on the factor a- b2.
Hence a*- b* = (a2- b?)(a? + b2) = (a - b)(a + b)(a? + b2).

Example 1.1.5.3. Consider the expression x3 - 64. Note that 64 = 43. Applying one of the Laws on cubes,
we obtain x3- 64 = (x - 4)(x2+ 4x + 16).

Example 1.1.5.4.  Consider the expression m2- n2+ 4m + 4n. We may write
m2-m+4m+4n=m2+4m+4n-n2=m(m+4)+n(4 - n),

and this does not lead anywhere. However, we may recognize that

m2=n2+4m+4n=(m-n)m+n)+4(m+n)=(m-n+4)(m+n)



and this gives a good factorization.

Example 1.1.5.5. We have

2 —22% —4r 4+ 8= (2% —22%) — (4o —8) =2 (2 —2) —4(x — 2)
S @) -2) = (-2 + 2 —2) = (¢ — 2@ +2)

Example 1.1.5.6. We have
at+l a—1 a+1 a—1  (a+41) (a—1)?  (a+1)?—(a—1)°

a?—a a?+a ala—1) ala+1) ala—1)(a+1) ala—1)(a+1) ala —1)(a+1)
C(la+1)=(a—-1))(a+1)+(a—1)) (a+1—-a+1)(a+1+a—1)

N ala—1)(a+1) N ala—1)(a+1)
da 4

ala—1)(a+1) (a—1)(a+1)

Example 1.5.7.  We have
2

1 Jr.1?—1 _ 2 - 1 + r—1
22 —1 22—z 224z (zv-1(z+1) 2@-1) z(@@+1)
2 x+1 (z—1)%

rz—1)(z+1) z(z—1)(z+1) + r(lz —1)(x+1)

20— (z4+1)+(z—-1)? 2x—z-1+22-22+1
z(z—1)(z+1) N z(z—1)(z+1)
22—z z(z—1) 1

:3:(.17—1)(3:+]) :a:(.?:—l)(m+]) x4

10



ACTIVITIES OF CHAPTER |

ACTVITIES I.1-Find the precise value of each of the following expressions:

a) 5+4x3+2-1 b) (1+2)x3—-4+5

c) (b4+3+18x2)+9 d) 4+2—-445x(-2)x(1+3)
e) 245 x(—1)—(24+3) x4+10+4—-(3-5) ) (44+2)x3+1)x5+10+2
g) /(—4) x (2—11) h) —/52 + 122
i) VEx5—4x4—1/3x3-2x2—(=1)x(-1)

ACTVITIES 1.2-Expand each of the following expressions:

a) (4z +3)(5z — 2) b) (4x +3)% + (5 — 2)° ¢) (4x+3)? — (5z — 2)°

d) (7z —2)% + (4o +5)° e) (z+y)(x — 2y) f) (x+2y+3)(2x—y—1)

g) (z+2y)(z —2y)* h) (z +2y)*(z — 2y)*
ACTVITIES I.3:Rewrite each of the following expressions, showing all the steps of your argument
carefully:

3 9 5 ] S5 + 3w
a)1 3 b)6 12 Ozt2 zid
I 5.3 (@+y)?  (@—y)?
7 P 1 2 2
dyz-1 =z+1 e)r x(xr+1) f) =« Yy

ACTVITIES 1.4: Rewrite each of the following expressions, showing all the steps of your argument
carefully:

2+3 647 243 647
a)1+5 849 M4+5'8+9

o1\ . /3 5 3 3 3 N
(E 3) ‘ ( 3)X(14-1+2X7+2) YA
T (———) (5+3)
e) r+y N ’1'3 + Y3 ey
ACTVITIES 1.5-Factorize each of the following expressions, using the laws on squares and cubes as
necessary:

a) x4- x2 b) x6- )8 c) X3y - xy3 d) x5y2 + x2yb

ACTVITIES 1.6-Simplify each of the following expressions, showing all the steps of your argument
carefully:

3 1 2 1 1
a) z(z +2) + —2¢ 22—4 b) 22 + xy + y? + 2y
Yy 2xy (r N yQ ) . 34+ y;r.
c)r—y a+y a?—y? d) r—y 12 — 32

e) X3- Y3+ x2y—x

11



CHAPTER II: LINEAR EQUATIONS AND GRAPHS
I.1: INTRODUCTION

In this Chapter we will discuss some algebraic methods for solving equations and inequalities.
Then we will introduce coordinate systems that allow us to explore the relationship between algebra and
geometry. Finally, we will use this algebraic-geometric relationship to find equations that can be used to
describe real-world data sets. Thus we will learn how to find the equation of a line that fits data and
consider many applied problems that can be solved using the concepts discussed in this chapter.

I.2: LINEAR EQUATIONS AND INEQUALITIES

The equation:
o 3-2(x+3)=2-35
and the inequality: 3

+2(3x—1) =5

b | =

are both first degree in one variable. In general, a first-degree, or linear equation in
one variable is any equation that can be written in this standard form:ax+b=0, a0 (1)

If the equality symbol, =, in (1) is replaced by < ; > ; < ; > the resulting expression is
called a first-degree, or linear inequality. A solution of an equation (or inequality) involving a single
variable is a number that when substituted for the variable makes the equation (or inequality) true.
The set of all solutions is called the solution set. When we say that we solve an equation (or
inequality), we mean that we find its solution set. Knowing what is meant by the solution set is one thing;
finding it is another. We start by recalling the idea of equivalent equations and equivalent inequalities.

If we perform an operation on an equation (or inequality) that produces another equation (or
inequality) with the same solution set, then the two equations (or inequalities) are said to be equivalent.
The basic idea in solving equations or inequalities is to perform operations that produce simpler
equivalent equations or inequalities and to continue the process until we obtain an equation or inequality
with an obvious solution.

11.2.1: LINEAR EQUATIONS
Linear equations are generally solved using the following equality properties:

An equivalent equation will result if:
1. The same quantity is added to or subtracted from each side of a given equation.
2. Each side of a given equation is multiplied by or divided by the same nonzero
quantity.

Example 1: Solve and check: 8x—3(x-4) =3(x-4)+6

Solution 8x-3(x—4)=3(x—4)+6 Use the distributive property.
8x-3x+12=3x-12+6 Combine like terms.
5x+12=3x-6 Subtract 3x from both sides.

12



2x+12=-6 Subtract 12 from both sides.

2x=-18 Divide both sides by 2
x=-9
CHECK:
8x —3(x—4) =3(x—4) + 6
8(—9) —3[(—9) —4] L 3[(-9) —4] +6
~72 — 3(—13) £ 3(-13) + 6
~33 £ 33
EXAMPLE 2:
Solve and check: X + 2 x 5
2 3
Solution:
What operations can we perform on
x+2 x
2 370

to eliminate the denominators? If we can find a number that is exactly divisible by

each denominator, we can use the multiplication property of equality to clear the denominators.The LCD
(least common denominator) of the fractions, 6, is exactly what we are looking for! Actually, any common
denominator will do, but the LCD results in a simpler equivalent equation. So, we multiply both sides of

the equation by 6:
xr+2 x
(£52-9)-s
(x +2) X
3 — 6 3= 30
3(x+2) —2x=130 th tribwt
Jx+6—2x=30 ne lil
x4+ 6=2730 .
=2
CHECK:
x+ 2 x
=5
2 3
24+ 2 24 5
7 "3 0
13-8<5
5Z5
Matched Problem 1:
Solve and check:
xr+1 X ]_
3 4 2

13



In many applications of algebra, formulas or equations must be changed to alternative equivalent forms. The following
example is typical.

EXAMPLE 3: Solving a Formula for a Particular Variable

If you deposit a principal P in an account that earns simple interest at an annual rate r, then

A in the account after t years is given by: A= P + Prt.

Solve for
(@) rinterms of A, P, and t

(b) Pinterms of A, r,and t

SOLUTION (a):

A=P+ Prt
P+ Pri=A
Pri=A-P
_A-P
" Pt

(b):
A=P+ Prt

P+ Prt=A

P(1 +rt) =4
A

P =
1 + rt

Matched Problem 2:

If a cardboard box has length L, width W, and height H,then its surface area is given by the formula S =
2LW + 2LH + 2WH. Solve the formula for (a) L in terms of S, W, and H (a) Hin terms of S, L, and W.

11.2.2: LINEAR INEQUALITIES

Before we start solving linear inequalities, let us recall what we mean by < (less
than) and >(greater than). If a and b are real numbers, we write

if there exists a positive number p such that a + p = b. Certainly, we would expect
that if a positive number was added to any real number, the sum would be larger than

the original. That is essentially what the definition states. If a<b, we may also write

Example 4:

(@)3<5 Sinced+2=5
(b) 6 < -2 Since -6+4=-2
()0 >-10 Since -10< 0 (because -10 +10 =0)
The inequality symbols have a very clear geometric interpretation on the real

14



number line. If a <b, then a is to the left of b on the number line; if ¢ >d, then cis
to the right of d on the number line:

a d b 0 c
An equivalent inequality will result, and the sense or direction will remain the
same if each side of the original inequality:
1. has the same real number added to or subtracted from it.
2. is multiplied or divided by the same positive number.
An equivalent inequality will result, and the sense or direction will reverse if each
side of the original inequality
3. is multiplied or divided by the same negative number.
Note: Multiplication by 0 and division by 0 are not permitted.

Therefore, we can perform essentially the same operations on inequalities that we perform on
equations, with the exception that the sense of the inequality reverses if we multiply or divide both
sides by a negative number. Otherwise, the sense of the inequality does not change. For example, if
we start with the true statement -3 > -7 and multiply both sides by 2, we obtain -6 >-14 and the sense of
the inequality stays the same. But if we multiply both sides of -3 >-7 by -2, the left side becomes 6 and
the right side becomes 14, so we must write 6 < 14 to have a true statement. The sense of the inequality
reverses.

If a < b, the double inequality a< x< b meansthata <xand x< b; that
is, x is between a and b. Interval notation is also used to describe sets defined by
inequalities, as shown in Table 1:

Table 1: Interval Notation

Interval Notation Inequality Notation Line Graph
[a, b] a=x=<#bh —f—t—x
a b
[a, B) a=x<h =
a b
(a.b] a<x=bh —H—”
a b
(a.b) a<x<=b ———
a b
(—=.a] x=a ——bx
a
|:: — ﬂ:l X < g -ﬁ—lﬂ-l
a
[b, =) x=h ——
b
I: h. o _:I ¥ = f'-' —H’-Jﬂ
b
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The numbers a and b in table 1 are called the endpoints of the interval. An interval is
closed if it contains all its endpoints and open if it does not contain any of its endpoints. The intervals [a,
b],(—o0, a] and [b, o) are closed, and the intervals (a, b),(—oo, a] and (b, ) are open.

Note that the symbol o (read infinity) is not a number. When we write [b, ), we are simply
referring to the interval that starts at b and continues indefinitely to the right. We never refer to as co an
endpoint, and we never write [b, co].The interval (—oo, ) is the entire real number line. Note that an
endpoint of a line graph in table 1 has a square bracket through it if the endpoint is included in the
interval; a parenthesis through an endpoint indicates that it is not included.

Example 5:

(a) Write [ -2, 3) as a double inequality and graph.
(b) Write x >-5 in interval notation and graph.
SOLUTION- (a):

[—2,3) isequivalentto —2 = x < 3, —fem——)t 51

-(b):
x = —5isequivalentto [ —5, = ). — e x

Explore and Discusé:

The solution to Example 5b shows the graph of the inequality x > -5. What is the
graph of x < -57 What is the corresponding interval? Describe the relationship between
these sets.

Example 6:
- Solve and graph:

2(2x + 3) < 6(x —2) + 10
Solution:

2(2x +3) < 6(x — 2) + 10 Remove parentheses
x4+ 6 < 6x— 12 + 10 Combine like terms
dxr + 6 < bx — 2 Subtract 6x from both sides
—2x+ 6 < -2

—2x =< -8 Divide both sides by —2 and reverse the
x>4 or (4, 0)

— ——x

4

Matched Problem:

Solve and graph: —8 = 3x — 5 < 7
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Note that a linear equation usually has exactly one solution, while a linear inequality usually has infinitely

many solutions.

Applications

To realize the full potential of algebra, we must be able to translate real-world problems into mathematics.
In short, we must be able to do word problems. Here are some suggestions that will help you get started:

Procedure for Solving Word Problems

1. Read the problem carefully and introduce a variable to represent an unknown quantity in the problem.
Often the question asked in a problem will indicate the unknown quantity that should be represented by a
variable.

2. |dentify other quantities in the problem (known or unknown), and whenever possible, express unknown
quantities in terms of the variable you introduced in Step 1.

3. Write a verbal statement using the conditions stated in the problem and then write an equivalent
mathematical statement (equation or inequality).

4. Solve the equation or inequality and answer the questions posed in the problem.

5. Check the solution(s) in the original problem.

Example 7 Purchase Price

Alex purchases a plasma TV, pays 7% state sales tax, and is charged $65 for delivery. If Alex’s total cost
is $1,668.93, what was the purchase price of the TV?

Solution

Step 1

Introduce a variable for the unknown quantity. After reading the problem,
we decide to let x represent the purchase price of the TV.

Step 2

Identify quantities in the problem.

Delivery charge: $65

Sales tax: 0.07x

Total cost: $1,668.93

Step 3

Write a verbal statement and an equation.

Price + Delivery Charge + Sales Tax = Total Cost

x+65+0.07x=1,668.93

Step 4
Solve the equation and answer the question.

x+65+0.07x = 1,668.93 Combine like terms.
1.07x + 65 = 1,668.93 Subtract 65 from both sides.
1.07x = 1,603.93 Divide both sides by 1.07.
x=1,499

The price of the TV is $1,499.

Step 5
17



Check the answer in the original problem.
Price = $1,499.00

Delivery charge = $ 65.00
Tax=0.07x1499= $ 104.93

Total = $1,668.93

Matched Problem:

Mary paid 8.5% sales tax and a $190 title and license fee when she bought a new car for a total
of $28,400. What is the purchase price of the car?

The next example involves the important concept of break-even analysis, which is encountered
in several places in this text. Any manufacturing company has costs, and revenues, R. The company will
have a loss if R <C, will break even if R = C, and will have a profit if R >C. Costs involve fixed costs,
such as plant overhead, product design, setup, and promotion, and variable costs, which are dependent
on the number of items produced at a certain cost per item.

Example 8: Break-Even Analysis

A multimedia company produces DVDs.One time fixed costs for a particular DVD are $
48,000, which include costs such as filming, editing, and promotion. Variable costs amount to $12.40 per
DVD and include manufacturing, packaging, and distribution costs for each DVD actually sold to a
retailer.
The DVD is sold to retail outlets at $17.40 each. How many DVDs must be manufactured?
and sold in order for the company to break even?

Solution

Step 1

Let x = number of DVDs manufactured and sold.

Step 2

C = cost of producing x DVDs

R = revenue (return) on sales of x DVDs

Fixed costs = $ 48,000

Variable costs = $12.40x

C = Fixed costs + variable costs

=$ 48,000 + $ 12.40x

R=§$ 17.40x

Step 3

The company breaks even if R = C; that is, if $17.40x = $48,000 + $12.40x
Step 4

17.4x = 48,000 + 12.4x Subtract 12.4x from both sides
5x =48,000 Divide both sides by 5.
x=9,600
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The company must make and sell 9,600 DVDs to break even.

Step 5
Check:
Costs Revenue
48,000 + 12.4x (9,600= $ 167,040) 17.4x (9,600) = $ 167,04

I.3: GRAPHS AND LINES

In this section, we will consider one of the most basic geometric figures—a line.
When we use the term line, we mean straight line. We will learn how to recognize and graph a line, and
how to use information concerning a line to find its equation. Examining the graph of any equation often
results in additional insight into the nature of the equation’s solutions.

1.3.1: CARTESIAN COORDINATE SYSTEM

Recall that to form a Cartesian or rectangular coordinate system, we select two real number
lines—one horizontal and one vertical—and let them cross through their origins as indicated in figure 1.
Up and to the right are the usual choices for the positive directions. These two number lines are called
the horizontal axis and the vertical axis, or, together, the coordinate axes. The horizontal axis is
usually referred to as the x axis and the vertical axis as the y axis, and each is labeled accordingly. The
coordinate axes divide the plane into four parts called quadrants, which are numbered counterclockwise
from I to IV (see fig. 1).

Il 1+ |

!

|

|

|

|

|

f————— b

I

.
Ty

<
o

1] IV

-l+—-—————— - -
R =110, —10)

FIGURE 1: THE CARTESIAN (RECTANGULAR) COORDINATE SYSTEM

Now we want to assign coordinates to each point in the plane. Given an arbitrary point Pin
the plane, pass horizontal and vertical lines through the point (fig. 1). The vertical line will intersect the
horizontal axis at a point with coordinate a, and the horizontal line will intersect the vertical axis at a point
with coordinate b. These two numbers, written as the ordered pair (a, b) form the coordinates of the
point P. The first coordinate, a, is called the abscissa of P; the second coordinate, b, is called the
ordinate of P. The abscissa of Q in figure 1 is -5, and the ordinate of Q is 5. The coordinates of a point
can also be referenced in terms of the axis labels. The x coordinate of R in figure 1 is 10, and the y
coordinate of R is -10. The point with coordinates (0, 0)is called the origin. The procedure we have just
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described assigns to each point P in the plane a unique pair of real numbers (a, b). Conversely, if we are
given an ordered pair of real numbers (a, b), then, reversing this procedure, we can determine a unique
point P in the plane. Thus,

There is a one-to-one correspondence between the points in a plane and the elements in the set of
all ordered pairs of real numbers. This is often referred to as the fundamental theorem of analytic
geometry.

1.3.2: GRAPHS OF Ax+By=C

In previous section, we called an equation of the form ax + b = 0 (a#0) a linear
equation in one variable. Now we want to consider linear equations in two variables. A linear equation
in two variables is an equation that can be written in the standard form: Ax + By = C where A, B, and C
are
variables.

A solution of an equation in two variables is an ordered pair of real numbers that satisfies the equation.
For example, (4, 3) is a solution of 3x - 2y = 6. The solution set of an equation in two variables is the set
of all solutions of the equation. The graph of an equation is the graph of its solution set.

Explore and Discuss:

(@) As noted earlier, (4, 3) is a solution of the equation.
Ix—2y=6

Find three more solutions of this equation. Plot these solutions in a Cartesian Coordinate system. What
familiar geometric shape could be used to describe the solution set of this equation?

(b) Repeat part (A) for the equation x = 2.

(c) Repeat part (A) for the equation y = -3.

In explore and discuss,you may have recognized that the graph of each equation is a (straight) line.

The graph of any equation of the form Ax + By = C (A and B not both 0) (1) is a line, and any line in a
Cartesian coordinate system is the graph of an equation of this form.

If A #0 and B #0, then equation (1) can be written as
y= —%x+%=mx+b,
If A=0and B # 0, then equation (1) can be written as
=§ and its graph is a horizontal line. If A = 0 and B = 0, then equation (1) can be

Written as x=§ and its graph is a vertical line. To graph equation (1), or any of its special cases, plot
any two points in the solution set and use a straightedge to draw the line through these two points. The
points where the line crosses the axes are often the easiest to find. The y intercept* is the y coordinate of
the point where the graph crosses the y axis, and the x intercept is the x coordinate of the point where the
graph crosses the x axis. To find the y intercept, let x = 0 and solve for y. To find the x intercept, let y =0
and solve for x. It is a good idea to find a third point as a check point..
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Example 1: Using Intercepts to Graph a Line from that equation: 3x - 4y = 12

SOLUTION x ¥
0 -3 y intercept
4 0 x intercept
8 3 Check point
The graph is:
+

Check point
e

1

]
R L
o
A H—
L -
— 15 N i K]
ull L
L i . ) - -
= X intercept
- |= LT I 11
— -
— ¥ intercepi |

-
Matched Problem- Graph: 4x - 3y =12
Example 2: Horizontal and Vertical Lines

(@) Graph x = -4 and y = 6 simultaneously in the same rectangular coordinate system.
(b) Write the equations of the vertical and horizontal lines that pass through the point (7, -5).

Solution

(a)

(b) Horizontal line through (7, -5): y = -5; Vertical line through (7, -5): x =7
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Matched Problem:
(a) Graph x = 5 and y = -3 simultaneously in the same rectangular coordinate
system.

(b) Write the equations of the vertical and horizontal lines that pass through the
point ( -8, 2).

1.3.2.1: SLOPE OF A LINE

If we take two points, P1 (x1, y1) and Pa(x2, y2), on a line, then the ratio of the change in y to the change in
x as the point moves from point P+ to point P is called the slope of the line. In a sense, slope provides a

measure of the “steepness” of a line relative to the x axis. The change in x is often called the run, and the
change in y is the rise.

DEFINITION-SLOPE OF A LINE.

If a line passes through two distinct points, P1 (x1, y1) and Pa(x2, y2) , then its slope is given by the
formula

Yr— N
m = X F 0
X — X 2

vertical change (rise)

horizontal change (run)

.
e e T

For a horizontal line, y does not change; its slope is 0. For a vertical line, x does not change; x1 = x2so its

slope is not defined. In general, the slope of a line may be positive, negative, 0, or not defined. Each case
is illustrated geometrically in table 1 below:

TABLE 1: GEOMETRIC INTERPRETATION OF SLOPE

Lime Rising as x mowves Falling as x moves

from lefi to right from lefi to right Horizontal Vertical
Slope Positive MNegative 0 Mot defined
Example +

The slope of a line is the same for any pair of distinct points on the line as shown below:
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Example 3: Finding Slopes

*Sketch a line through each pair of points, and find the slope of each line:

(a) (-3, -2); 3, 4)

Solution:
a)
¥
_j N *X
3-(-3) 6
c)
¥
I3 3 = 1
—3-(-3)_0
M3 (=2) s

Matched Problem:

(b) (-1,3);(2,-3) () (-2,-3):(3,-3)

(d) (-2, 4), (-2,-2)

b)
_'I-:
I3 ¥
3-3  —6
_ — - _3
T2 -1y 3
d)
¥
%
_3-(=3_0
m=3 2 (=2) "5

Slopes not defined




*Find the slope of the line through each pair of points.
(@) (-2,4);(3,4) (b)(-2,4);0,-4)  (¢)(-1,8);(-1,-2)  (d)(-1,-2);(2,1)
1.3.2.2: EQUATIONS OF LINES: SPECIAL FORMS

Let us start by investigating why y = mx + b is called the slope-intercept form for a line.
Explore and Discuss:
*(a) Graph y=x+ b for b =-5, -3, 0, 3, and 5 simultaneously in the same coordinate

system. Verbally describe the geometric significance of b.
*(b) Graph y =mx-1form=-2,-1,0, 1, and 2 simultaneously in the same coordinate system.
Verbally describe the geometric significance of m.

As you may have deduced from Explore and Discuss, constants m and b in
y = mx + b have the following geometric interpretations:

If we let x = 0, then y = b. So the graph of y = mx + b crosses the y axis at (0, b). The constant b is the y
intercept. For example, the y intercept of the graph of y = -4x - 1 is -1. To determine the geometric
significance of m, we proceed as follows: If y = mx + b, then by setting x = 0 and x = 1, we conclude that
(0, b)and (1, m+ b)) lie on its graph (Figure 2).

Figure 2: The slope-intercept form for a line.
The slope of this line is given by:
Yi— ¥ (m+b) —b
Xy — X B 1 -0
So m s the slope of the line given by y = mx + b.
Thus the equation y = mx + b ( m = slope, b = y intercept) is called the slope-intercept form of an
equation of a line.

= m

Example 4: Using the Slope-Intercept Form
(a) Find the slope and y intercept, and graph y =-2/3 x - 3.
(b) Write the equation of the line with slope 2/3 and y intercept -2.

Solution
(a) Slope =m=-2/3 ; y intercept = b = -3
(b) m=2/3and b =-2; so, y = 2/3x-2

Matched Problem: Write the equation of the line with slope 1/2and y intercept-1. Graph.
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Suppose that a line has slope m and passes through a fixed point (x1, y1). If the
point (x, y) is any other point on the line (Fig. 3),

¥

then % = m. Thatis, y - y1 = m(x - x1) -point-slope form of an equation of a line.

We now observe that (x1, y1) also satisfies equation the previous equation and conclude that it is an
equation of a line with slope m that passes through (x1, y1). The point-slope form is extremely useful,
since it enables us to find an equation for a line if we know its slope and the coordinates of a point on the
line or if we know the coordinates of two points on the line.

Example 5: Using the Point-Slope Form
(a) Find an equation for the line that has slope 1/2 and passes through (-4, 3). Write the final answer in
the form Ax + By = C.
(b) Find an equation for the line that passes through the points (-3, 2) and (-4, 5). Write the resulting
equation in the form y = mx + b.

Solution
(a)
Usey —y, = m(x — x;). Let m = Yand (x,.y,) = (—4.3). Then
v =3 =1l — (—4)]
y—3=73(x+4)
ly—-6=x+4
—x+2y=10 or x—2y = —10
b)
First, find the slope of the line by using the slope formula:
V2 — ¥ 5 -2 3
"= X3 — X T 4- (—3) T o1 -
Nowusey — vy, = m{x — x;) withm = —3and (x,.,v) = (—3.2):
y—2=-3[x— (-3)]
y—2=-3(x+3)
y—2=-3x-19
v=-3x-17

Matched Problem:
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(a) Find an equation for the line that has slope 2/3 and passes through (6, -2).Write the resulting equation
in the form Ax + By = C, A >0.

(b) Find an equation for the line that passes through (2, -3) and (4, 3). Write the resulting equation in the
form y=mx+b.

1.3.2.3: APPLICATIONS

We will now see how equations of lines occur in certain applications.

Example 6: Cost Equation

The management of a company that manufactures skateboards has fixed costs (costs at 0 output)
of $300 per day and total costs of $4,300 per day at an output of 100 skateboards per day. Assume that
cost C is linearly related to output x.

(a) Find the slope of the line joining the points associated with outputs of 0 and
100; that is, the line passing through(0, 300) and (100, 4,300).

(b) Find an equation of the line relating output to cost. Write the final answer in the
form C=mx +b.

(c)Graph the cost equation from part (b) for 0<x<200.

Solution
a)
Y2 — ¥
m =
Xz — X
4300 — 300
100 -0
4,000
= —— =40
100

b) We must find an equation of the line that passes through 10, 3002 with slope
40. We use the slope-intercept form:

C=mx+b
C = 40x + 300
c)
[
r 9
10,0000
= .
= BN F T T T T T I
= A
= ey
= N o |
= 6.000 1 A |
=i & |
= s |
= O 1+ |
= EXLLL /,/ |
= P I
e 2000+ i
e [
L , ! -
104 200
COutpur per Day
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The fixed cost of $300 per day covers plant cost, insurance, and so on. This cost is incurred whether or
not there is any production. The variable cost is 40x, which depends on the day’s output. Since increasing
production from x to x + 1 will increase the cost by $40 (from 40x + 300 to 40x + 340), the slope 40 can
be

interpreted as the rate of change of the cost function with respect to production x.

Matched Problem: Answer parts (a) and (b) in Example 6 for fixed costs of $250 per day and total costs
of $3,450 per day at an output of 80 skateboards per day.

In a free competitive market, the price of a product is determined by the relationship
between supply and demand. If there is a surplus—that is, the supply is greater than the demand—the
price tends to come down. If there is a shortage—that is, the demand is greater than the supply—the
price tends to go up. The price tends to move toward an equilibrium price at which the supply and
demand are equal. The following example introduces the basic concepts.

Example 7: Supply and Demand

At a price of $9.00 per box of oranges, the supply is 320,000 boxes and the demand is
200,000 boxes. At a price of $8.50 per box, the supply is 270,000 boxes and the demand is 300,000
boxes.
(a) Find a price—supply equation of the form p = mx + b, where p is the price in dollars and x is the
corresponding supply in thousands of boxes.
(b) Find a price-demand equation of the form p = mx + b, where p is the price in dollars and x is the
corresponding demand in thousands of boxes.
(c) Graph the price—supply and price—demand equations in the same coordinate system and find their
point of intersection.

Solution

a) To find a price—supply equation of the form p = mx + b, we must find two points of the form (x, p) that
are on the supply line. From the given supply data, (320, 9) and (270, 8.5) are two such points. First, find
the slope of the line:

9 -85 05
320 270~ 50 00l

m =
Now use the point-slope form to find the equation of the line:
p—p=m(x— xp)
p— 9 =0.01(x — 320)
p—9=00lx—- 32
p=00lx 4+ 3.8

b) From the given demand data, (200, 9) and (300, 8.5) are two points on the demand line.
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85 — 0O —0.5

m=300—200= 100 = —0.005
p— P = m(x — x)
p— 9= —0005({x — 200)
p— 9= —0,005x + 1
p = —0.,005x + 10

c¢)From part (a), we plot the points (320, 9) and (270, 8.5) and then draw the line through them.
We do the same with the points (200, 9) and (300, 8.5) from part (b) (Fig. 4). (Note that we restricted the
axes to intervals that contain these data points.) To find the intersection point of the two lines, we equate
the right hand sides of the price—supply and price-demand equations and solve for x:

Price-supply  Price-demand
0.01x + 5.8 =-0.005x + 10

0.015x=4.2
x =280

e e - .
Iy Equilibrium point

o (280, 8.6)
Equilibrium ﬂ]} R0 — — ™ /

-"'-r ] -, — — F 5
price (5) Jasol (270, 8.5) o (300, 8.5)

Price—demand equation
p = —0.005x + 10
8.0+

'

]
[}
b
=1
[
=1
=]
o ——————————

et
=
L
1=
=

|

Equilibrium
quantity

Figure 4: Graphs of price-supply and price-demand equations

Now use the price-supply equation to find p when x = 280:
p=0.01x+58
p=0.01(280) + 5.8 = 8.6
As a check, we use the price-demand equation to find p when x = 280:
p=-0.005x + 10
p=-0.005(280) + 10 = 8.6
The lines intersect at (280, 8.6). The intersection point of the price—supply and price—-demand equations
is called the equilibrium point, and its coordinates are the equilibrium quantity (280) and the
equilibrium price ($8.60). These terms are illustrated in Figure 4.
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CHAPTER Ill: INEQUALITIES AND ABSOLUTE VALUES

lIl.1: SOME SIMPLE INEQUALITIES

Basic inequalities concerning the real numbers are simple, provided that we exercise due care. We begin
by studying the effect of addition and multiplication on inequalities.

ADDITION AND MULTIPLICATION RULES.

Suppose that a,b € Rand a < b. Then

(a) foreveryceR,wehavea+c<b+c;

(b)y  forevery ¢ € R satisfying ¢ > 0, we have ac < bc; and (c) for every ¢ € R satisfying ¢ < 0, we
have ac > bc.In other words, addition by a real number ¢ preserves the inequality. On the other hand,
multiplication by a real number ¢ preserves the inequality if ¢ > 0 and reverses the inequality if ¢ < 0.

Remark. We can deduce some special rules for positive real numbers. Suppose that a,b,c,d € R are all
positive. If a < b and ¢ < d, then ac < bd. To see this, note simply that by part (b) above, we have ac < bc
and bc < bd.

SQUARE AND RECIPROCAL RULES.
Suppose thata,b e Rand 0 <a<b. Then
(@)a?<b?% and (b) a'>b"

Proof. Part (a) is a special case of our Remark if we take ¢ = a and d = b. To show part (b), note that

1 1 b—a
~1 -1 __

b = ——=—— >0

¢ ’ a b ab .

CAUCHY’S INEQUALITY.
For every a,b € R, we have a2+ b2 = 2ab. Furthermore, equality holds precisely when a = b.

Proof.Simply note that a2+ b2-2ab = a2- 2ab + b2=(a - b)2= 0, and that equality holds precisely when
a - b=0. We now use some of the above rules to solve inequalities. We shall illustrate the ideas by
considering a few examples in some detail.

Example 1: Consider the inequality 4x + 7 < 3. Using the Addition rule and adding -7 to both sides, we
obtain 4x < -4. Using one of the Multiplication rules and multiplying both sides by the positive real number
1/4, we obtain x < -1. We have shown that

4x+7<3 == x<-1.

Suppose now that x < -1. Using one of the Multiplication rules and multiplying both sides by the positive
real number 4, we obtain 4x < -4. Using the Addition rule and adding 7 to both sides, we obtain 4x +7 < 3.
Combining this with our earlier observation, we have now shown that
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4x+7<3 e x<-1.
We can confirm our conclusion by drawing a graph of the line y = 4x+7 and observing that the part of the
line below the horizontal line y = 3 corresponds to x < -1 on the x-axis.

y

y=4x+7

Example 2: Consider the inequality =5x + 4 > =1. Using one of the Multiplication rules and multiplying
both sides by the negative real number -1, we obtain 5x - 4 < 1. Using the Addition rule and adding 4 to
both sides, we obtain 5x < 5. Using one of the Multiplication rules and multiplying both sides by the positive

real number 1/5, we obtain x < 1. We have shown that

-5x+4> -1 == x<1.
Suppose now that x < 1. Using one of the Multiplication rules and multiplying both sides by the positive real
number 5, we obtain 5x < 5. Using the Addition rule and adding -4 to both sides, we obtain 5x-4 < 1. Using
one of the Multiplication rules and multiplying both sides by the negative real number -1, we obtain -5x +
4 > -1, Combining this with our earlier observation, we have now shown that

-5x+4>-1 & x<1.
We can confirm our conclusion by drawing a graph of the line y = -5x + 4 and observing that the part of the

line above the horizontal line y = -1 corresponds to x < 1 on the x-axis.
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Example 3: Consider the inequality x2< a2, where a > 0 is fixed. Clearly x = £a are the only solutions of
the equation x2 = a2. So let us consider the inequality x2 < a2. Observe first of all that the inequality is
satisfied when x = 0. On the other hand, if 0 < x < a, then the Square rule gives x2 < a2. However, if -a < x
< 0, then using one of the Multiplication rules and multiplying all sides by the negative real number -1, we
obtain a > -x > 0. It follows from the Square rule that (-x)2 < a2, so that x2 < a2. We have now shown that

-a<x<a == X2< g2,

Suppose now that x > a. Then it follows from the Square rule that x2> a2. On the other hand, suppose that

x < -a. Using one of the Multiplication rules and multiplying both sides by the negative real number -1, we

obtain -x > a. It follows from the Square rule that (-x)2> a2, so that x2> a2. We have now shown that
X<-a or x>a == X2> a2,

It now follows that
-a<x<a == X2< a2,

We can confirm our conclusion by drawing a graph of the parabola y = x2and observing that the part of the
parabola on or below the horizontal line y = a2 corresponds to —a < x < a on the x-axis.
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Example 4: Consider the inequality x2- 4x + 3 < 0. We can write
X2-4x+3=x2-4x+4-1=(x-2)2-1,

so that the inequality is equivalent to (x - 2)2- 1 < 0, which in turn is equivalent to the inequality (x - 2)2<
1, in view of the Addition rule. Now write u = x - 2. Then it follows from Example 6.1.3 that
-1<su<1 e w2,

Hence
-1sx-2<1 e (x-2)p2=<1.

Using the addition rule on the inequalities on the left hand side, and using our earlier observation, we
conclude that
1<x<3 == x2-4x+3<0.

We can confirm our conclusion by drawing a graph of the parabola y = x2- 4x + 3 and observing that the

part of the parabola on or below the horizontal line y = 0 corresponds to 1 < x < 3 on the x-axis.

Example 5: Consider the inequality below.

1
— <2
€ .

Clearly we cannot have x = 0, as 1/0 is meaningless. We have two cases:

1)-Suppose that x > 0. Using one of the Multiplication rules and multiplying both sides by the positive real
number X, we obtain the inequality 1 < 2x. Multiplying both sides by the positive real number 1/2, we obtain
1/2 < x. Suppose now that 1/2 < x. Using one of the Multiplication rules and multiplying both sides by the
positive real number 2/x, we obtain the original inequality. We have therefore shown that for x > 0, we have

1 1
- — <2
T>2 == ;’I'< :

2)-Try to use one of the Multiplication rules to show that

|
— <0
x<0 == ;1:< .

The result is obvious, but the proof is slightly tricky. Combining the two parts, we conclude that
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1 1
r > — — <2
x<0 o' 2 e 7

We can confirm our conclusion by drawing a graph of the hyperbola y = 1/x and observing that the part of
the hyperbola below the horizontal line y = 2 corresponds to x < 0 together with x > 1/2 on the x-axis.

y

y=1/z
y=2

N

1

ll.2: ABSOLUTE VALUES
Definition.  For every a € R, the absolute value |a| of a is a non-negative real number satisfying

al = {a if a = 0;
~ l—a ifa<0.

Remark. If we place the number a on the real number line, then the absolute value |a| represents the
distance of a from the origin 0.

PROPERTIES OF ABSOLUTE VALUES.

Forevery a, b € R, we have

(a) |a| = 0;

(b) |a| = a;

(c) |a|? = a?;

(d) |ab| = |al|bl; and
(e) |a+ b| < |a| + |bl.
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The graph of the function y = |x| is given below, where a € R is a non-negative real number.

y
y = Ixl
a
X
a +a
As a € Ris non negative, then
|x|<aifandonlyif —a< x<+a,and |x| <aifandonlyif -a<x<+a.

Example 6: The equation |x| = 4 has two solutions x = 4.
Example 7. The equation |2x + 1| = 5 has two solutions, one satisfying 2x + 1 = 5 and the other satisfying
2x+1=-5.Hence x=2orx=-3.

Example 8:  The inequality |x| < 5 is satisfied precisely when -5 < x <5.

Example 9:. The inequality |2x + 1| < 9 is satisfied precisely when -9 < 2x + 1 <£9; in other words, when
-b<x<4.

Example 10:The equation vz + 42 4+ 13 = x —1 is satisfied only if the right hand side is nonnegative, so
that we must have x = 1. Squaring both sides, we have x2+4x+13 = (x-1)2= x2-2x+1, so that 6x + 12 =0,
giving x = —2. Hence the equation has no real solution x.

Example 11. Consider the inequalities 3 < |x+4| < 7. Note first of all that the inequality |x+4| < 7 holds
precisely when =7 < x + 4 < 7; in other words, when -11 < x < 3. On the other hand, the inequality |x+4| <
3 holds precisely when -3 < x+4 < 3; in other words, precisely when -7 < x < -1. Hence the inequality |x
+ 4| > 3 holds precisely when x < =7 or x > 1. It follows that the original inequalities hold precisely when
-11 <x< -7 or-1<x<3. We can confirm our conclusion by drawing a graph of the function y = |x + 4|
and observing that the part of the graph between the horizontal lines y = 3 and y = 7 corresponds to -11 <

x < =7 together with -1 < x < 3 on the x-axis.
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-11

y=Ix+4|
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ACTIVITIES OF CHAPTER I

ACTVITIES lIl.1: Suppose that a and 8 are two positive real numbers. The number 3(a+ B) is called the
arithmetic mean of a and 8, while the number Vag is called the geometric mean of a and g.

a) Prove thatveB < 3(e+ B); in other words, the geometric mean never exceeds the arithmetic mean.
b) Show that equality holds in part (a) precisely when a = .

ACTVITIES Ill.2: For each of the following inequalities, find all real values of x satisfying the inequality:
a)2x+4<6 b) 5 - 3x> 11 c)7x+9>-5 d)dx+4<28

€)2x+5<3 f4-6x210

ACTVITIES 11I.3: Determine all real values of x for which the inequalities 5 < 2x + 7 < 13 hold.
ACTVITIES IlIl.4:For each of the following inequalities, determine all real values of x for which the inequality
holds, taking care to distinguish the two cases x > 0 and x < 0, and explain each step of your argument by
quoting the relevant rules concerning inequalities:

T 1

+ 4 . 1
< 3 b) — <3 c) —2< — <3
2r T ’ T

a)

ACTVITIES lIL.5: For each of the following inequalities, determine all real values of x for which the inequality
holds, taking care to distinguish two cases, and explain each step of your argument by quoting the relevant
rules concerning inequalities:

1. Find all solutions of the inequality picture. |x + 2| <6, and confirm your answer by drawing a suitable

2. For each of the following inequalities, determine all real values of x for which the inequality holds:
a)1<|3x-5|<7 b)1<|(x-1)3<8

CHAPTER IV: SYSTEMS OF LINEAR EQUATIONS
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IV.1: INTRODUCTION

Most linear systems of any consequence involve large numbers of equations and variables. It
is impractical to try to solve such systems by hand. There are a wide array of approaches to solving linear
systems, ranging from graphing calculators to software and spreadsheets. In this chapter,we--------

Iv.2: SYSTEMS OF LINEAR EQUATIONS

Let us consider a pair of simultaneous linear equations (system A) in two variables, of the type
ax + by =c¢y,
axx + boy = ¢y,
where a1, a2, b1, by, €1, ¢2 € R. Multiplying the first equation in (A) by b2 and multiplying the second equation

in (A) by b1, we obtain (B):
aybax + bibay = c1ba,
t'!.gEJ]J‘ + li!)l f)gy — ('25)] .

Subtracting the second equation in (B) from the first equation, we obtain

(@a1box + b1bay) = (a2b1x + b1bay) = c1b2— Cabn.

Some simple algebra leads to(C):
(a1b2— a2b1)x = c1ba— C2bn.

On the other hand, multiplying the first equation in (A) by a2 and multiplying the second equation in (A) by
a1, we obtain (D):

aaxx + biazy = cray,

araxx + baty = coa.

Subtracting the second equation in (D) from the first equation, we obtain

(a1a2x + b1azy) — (a1a2x + boaty) = c1ax- coa.

Some simple algebra leads to (E)
(b1az— boat)y = c1a2— Coa1.
Suppose that:
ﬂlli!)j — t'!.jEi'] # 0.
Then (C) and (E) can be written in the form F)
(‘152 — C2b1 o C19 — Colly

r= e y

aiby — ashy and  bias — beay,
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In practice, we do not need to remember these formulas. It is much easier to do the calculations
by using some common sense and cutting a few corners in doing so.
We have the following geometric interpretation. Each of the two linear equations in (A) represents a line
on the xy-plane. The condition

ﬂlli!)j — t'!.jEi'] # 0.
ensures that the two lines are not parallel, so that they intersect at precisely one point, given by (F)

Example1:. Suppose that
x+y=12,
X-y=6.
Note that we can eliminate y by adding the two equations. More precisely, we have

(x+y)+(x-y)=12+6.

This gives 2x = 18, so that x = 9. We now substitute the information x = 9 into one of the two original
equations. Simple algebra leads to y = 3. We have the following picture.

y

Example 2:. Suppose that
X+y=32,

3x+2y=T70.

We can multiply the first equation by 2 and keep the second equation as it is to obtain

2x + 2y =064, 3x+ 2y =170.
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The effect of this is that both equations have a term 2y. We now subtract the first equation from the
second equation to eliminate this common term. More precisely, we have

(3x +2y) - (2x + 2y) = 70 - 64.

This gives x = 6. We now substitute the information x = 6 into one of the two original equations. Simple
algebra leads to y = 26.

Example 3. Suppose that
3x+2y=10,
4x -3y =2.
We can multiply the first equation by 4 and the second equation by 3 to obtain
12x + 8y = 40,
12x - 9y = 6.

The effect of this is that both equations have a term 12x. We now subtract the second equation from the
first equation to eliminate this common term. More precisely, we have

(12x + 8y) - (12x - 9y) = 40 - 6.

This gives 17y = 34, so that y = 2. We now substitute the information y = 2 into one of the two original
equations. Simple algebra leads to x = 2. The reader may try to eliminate the variable y first and show
that we must have x = 2.

Example 4:.Suppose that
Tr— 5y =16

20+ Ty = 13.]
We can multiply the first equation by 7 and the second equation by 5 to obtain
49 — 35y = 112,
10z + 35y = 65,
The effect of this is that both equations have a term 35y but with opposite signs. We now add the two
equation to eliminate this common term. More precisely, we have

(49x - 35y) + (10x + 35y) = 112 + 65.

This gives 59x = 177, so that x = 3. We now substitute the information x = 3 into one of the two original
equations. Simple algebra leads to y = 1.

Example 5: Suppose that the difference between two numbers is equal to 11, and that twice the smaller
number minus 4 is equal to the larger number. To find the two numbers, let x denote the larger number
and y denote the smaller number. Then we have x - y =11 and 2y - 4 = x, so that

x-y=11,

x-2y=-4.
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We now eliminate the variable x by subtracting the second equation from the first equation. More
precisely, we have

(x-y)~(x-2y)=11-(-4).

This gives y = 15. We now substitute the information y = 15 into one of the two original equations. Simple
algebra leads to x = 26.

Example 6:. Suppose that a rectangle is 5cm longer than it is wide. Suppose also that if the length and
width are both increased by 2cm, then the area of the rectangle increases by 50cm2. To find the
dimension of the rectangle, let x denote its length and y denote its width. Then we have x = y+5 and
(x+2)(y+2)-xy = 50. Simple algebra shows that the second equation is the same as 2x+2y+4 = 50. We
therefore have
r— y= 5

2o+ 2y = 46,
We can multiply the first equation by 2 and keep the second equation as it is to obtain

20 — 2y =10

2o+ 2y = 46,
We now eliminate the variable y by adding the two equations. More precisely, we have

(2x = 2y) + (2x + 2y) =10 + 46.

This gives 4x = 56, so that x = 14. It follows that y = 9.

The idea of eliminating one of the variables can be extended to solve systems of three linear equations.
We illustrate the ideas by the following examples.

Example 6: Suppose that
X+y+z=6,
2x+ 3y +2z=13,
X+2y-z=5.

Adding the first equation and the third equation, or adding the second equation and the third equation,
we eliminate the variable z on both occasions and obtain respectively

2x+3y=11,3x+5y=18.

Solving this system, the reader can show that x = 1 and y = 3. Substituting back to one of the original
equations, we obtain z = 2.

Example 7. Suppose that
x-y+z=10,4x+2y-32=8,3x-5y+2z=34.

We can multiply the three equations by 6, 2 and 3 respectively to obtain

6x - 6y + 62 = 60, 8x +4y-6z=16, 9x - 15y + 62 =102.

The reason for the multiplication is to arrange for the term 6z to appear in each equation to make the
elimination of the variable z easier. Indeed, adding the first equation and the second equation, or adding
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the second equation and the third equation, we eliminate the variable z on both occasions and obtain
respectively:
14x-2y=76,17x-11y=118.

Multiplying the first equation by 11 and the second equation by 2, we obtain
154x - 22y = 836, 34x - 22y = 236.

Eliminating the variable y, we obtain 120x = 600, so that x = 5. It follows that y = -3. Using now one of

the original equations, we obtain z = 2.

Example 8: Suppose that
6x+4y-2z=0,

3x-2y+4z=3,5x-2y+6z=3.
Multiplying the last two equations by 2, we obtain
bx+4y-2z=0,
6x-4y+8z=6,10x -4y +12z=6.

The reason for the multiplication is to arrange for the term 4y to appear in each equation to make the
elimination of the variable y easier. Indeed, adding the first equation and the second equation, or adding
the first equation and the third equation, we eliminate the variable y on both occasions and obtain
respectively

12x+6z2 =16, 16x + 10z = 6.

Solving this system, the reader can show that x = 1 and z = -1. Substituting back to one of the original

equations, we obtain y = -2.

Example 9: Suppose that

2Xx+y-2=9,5x+2z=-3, 7Tx-2y=1.
Our strategy here is to eliminate the variable y between the first and third equations. To do this, the first
equation can be written in the form 4x+2y -2z = 18. Adding this to the third equation, and also keeping
the second equation as it is, we obtain

11x-2z=19, 5x + 2z = -3.

Solving this system, the reader can show that x = 1 and z = -4. Substituting back to one of the original
equations, we obtain y = 3. The reader may also wish to first eliminate the variable z between the first
two equations and obtain a system of two equations in x and y.
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IV.3: QUADRATIC EQUATIONS

Consider an equation of the type
ax2+bx+c=0, (A)

where a,b,c €R are constants and a# 0 .To solve such an equation, we observe first of all that

(12+|r)1+( a 12+b?+(f a ?2+2b1+ b 2+(: b2
1 o = alr — — —alx —p e c v
a a 2a 2a a 4a?

B LY P odac)
e\ 2a 4a? -

precisely when

- b 2 b —Mac

Y 2a) 0 402 (B)
There are three cases:

(1) If b2-4ac < 0, then the right hand side of (B) is negative. It follows that (B) is never
satisfied for any real number x, so that the equation (A) has no real solution.

(2)  Ifb?>-4ac =0, then (B) becomes

b 2
(J+) -0 p=_2
2a , so that 2a.

Indeed, this solution occurs twice, as we shall see later.
(3)  [Ifb?>-4ac >0, then (B) becomes

b Vb2 — 4ac —b+ b? — dac
r+ —=4+ r=—
2a 2a so that 2a .

We therefore have two distinct real solutions for the equation (A).
Example 1. For the equation 2x2+6x+4 = 0, we have (a,b,c) = (2,6,4), so that b2-4ac = 4 > 0. It follows

that this equation has two distinct real solutions, given by

—6++/4

4

=—lor —2
Observe that 2x2+ 6x +4 =2(x + 1)(x + 2).

Example 2: For the equation x2+2x+3 = 0, we have (a,b,c) = (1,2,3), so that b2-4ac = -8 < 0. It follows

that this equation has no solution.

Example 3. For the equation 3x2- 12x + 12 = 0, we have b? - 4ac = 0. It follows that this equation has
one real solution, given by x = 2. Observe that 3x2- 12x + 12 = 3(x - 2)2. This is the reason we say that

the root occurs twice.
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IV.3: FACTORIZATION AGAIN
Consider equation (A) again. Sometimes we may be able to find a factorization of the form

ax2+bx+c=a(x-a)x-p), (C)

where a,8 €R. Clearly x = a and x = 8 are solutions of the equation (9).

Example 1: For the equation x2- 5x = 0, we have the factorization

X2=95x=x(x-5)=(x-0)(x-5).

It follows that the two solutions of the equation are x =0 and x = 5.

Example 2:. For the equation x2- 9 = 0, we have the factorization x2- 9 = (x - 3)(x + 3). It follows that

the two solutions of the equation are x = £3.

Note that

a(x - a)(x - B) = a(x2- (a + B)x + ap) = ax2- a(a + B)x + aap.

It follows from (C) that
ax2+ bx + ¢ = ax2- a(a + B)x + aaf.

Equating corresponding coefficients, we obtain

b=-a(a+p) and  c=aaB.

We have proved the following result-sum AND PRODUCT OF ROOTS OF A QUADRATIC EQUATION.

Suppose that x = a and x = 8 are the two roots of a quadratic equation ax2+ bx + x = 0. Then

b c
= —— 3 = —
@t/ a and « a.

Example 3.For the equation x2- 5x - 7 = 0, we have (a,b,c) = (1,-5,-7), and

5+25+28 5+./53
- 2 h 2 .

Note that
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Example 4. For the equation x2- 13x + 4 = 0, we have (a,b,c) = (1,-13,4), and

13 +£+/169 —-16 134+ /153
Tr = =
2 2 .

Note that

13+ /153 N 13 — /153 13+ /153 L 13— V153 169 —153 A
2 2 =13 and 2 2 - 4 -

We conclude this section by studying a few more examples involving factorization of quadratic
polynomials.

Example 5. Consider the expression x2 - 4x + 3. The roots of the equation x2- 4x + 3 = 0 are given by
4 4+ /16 — 12 o 4 —4/16—12
= 5 =3 and 8= 5 =

i i

¥ 1.

Hence we have 22 — 4z + 3 = (z — 3)(x — 1).

Example 6. Consider the expression 2x2+5x+2. The roots of the equation 2x2 +5x+2 = 0 are given by

543516 1 y_ 5-VBT6 _
o= 1 ~7% and 77 1 -

Hence we have
. 1
202 4+ 5x4+2=2 (:r—l— 5) (x42)=(2z+1)(z+2)

Example 7. Consider the expression 4x2-x-14. The roots of the equation 4x2-x-14 = 0 are given by

1++1+4224 1—/1+224 7
0=
3

f=-—— VT L

=2 and ' 8 4.
Hence we have

427 — 2 — 14 = 4(z - 2) (q- + Zi) =(z—-2)4x+7)

Example.8 We have

(x+2)2- (2x-1)2=(x2+4x+4) - (4x2-4x+1)=x2+4x +4 - 4x2+ 4x - 1 = -3x2+ 8x + 3. The roots

of the equation -3x2+ 8x + 3 = 0 are given by

o BEVETE36 1 5 8- V6IT36 _,
o —6 -3 and " —6 .

(x+2)? — (22— 1) = -3 (.L + —) (-3)=—-Bz+1)(z—-3)=Bx+1)(3—z)
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Alternatively, we can use one of the Laws on squares (writing a = x + 2 and b = 2x - 1). We have

(x+2)2= 2x = 1)2=((x+2) - (2x - ))((x + 2) + (2x - 1))
=(x+2-2x+1)(x+2+2x-1)=(3-x)(3x + 1).

Example 9: Consider the expression 6p - 17pq + 12pq2. Taking out a factor p, we have 6p - 17pq

+12pq%2=p(6 - 17q + 12¢2).

Consider next the quadratic factor 6 - 17q + 12g2. The roots of the equation 6 - 17q + 12¢2= 0 are given

by
174+ /280 =288 3 5 17— /280 —288 2
= = - I = = —
24 4 and ' 24 3.
Hence

‘ 3 2
6p — 17pg + 12pg* = p(6 — 17q + 12¢°) = 12p (q - —1) (q - g) =p(dg—3)(3¢ - 2)

Example 10. We have 10a2b + 11ab - 6b = b(10a2+ 11a - 6). Consider the quadratic factor 10a2+ 11a

- 6. The roots of the equation 10a2+ 11a - 6 = 0 are given by

g —HHVI21+210 _ 2 g —11-V1214+240 3
S 20 5 and 7 20 )
Hence
2 3
10a%b + 11ab — 6b = b(10a* + 11a — 6) = 10b (a - ;) (a + 5) = b(5a — 2)(2a + 3)
(8]
Example 11: Consider the expression

a—3 a+4
a®—11a+28 a®—6a—7
Note that a? —1la+28=(a—T7)(a—4) and a? — 6a — 7= (a — 7)(a+ 1) Hence
a—3 a-+4 a—3 a+4
a2 —1la+28 a®—6a—17 (a=T)(a—-4) (a—T)(a+1)

SECLE LS (a+4)(a—4)
(a—T)a—4)(a+1) (a—T7)(a—4)(a+1)
_ (a—3)(a 1)—( 14 4)(a —4) _ (a* — 2a — 3) — (a® — 16)
(a—T)a—4)(a+1) (a—T)a—4)(a+1)
13 — 2a

(a=T)a—4)(a+1)

Example 12.: We have
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1 1 4
11 @012 @t La)
(x4 2)(z + 3) (x+3)

4

T+ +r2)@+3) " @+ Da+2)(z+3)

(z+1)(z +2)(x+3)

(4 2)a+3)+ (2 +3)—4 (2 +5r+6)+(x+3)—4 2% + 62 +5
@D+ +3) @) +2)@+3) (@)@ +2)(@+3)
(x+1)(z+5) x+5

T @)@ +2)(@+3) @+ +3)
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IV.4: HIGHER ORDER EQUATIONS

For polynomial equations of degree greater than 2, we do not have general formulae for their solutions.
However, we may occasionally be able to find some solutions by inspection. These may help us find
other solutions. We shall illustrate the technique here by using three examples.

Example 1. Consider the equation x3-4x2+2x+1 = 0. It is easy to see that x = 1 is a solution of this cubic
polynomial equation. It follows that x - 1 is a factor of the polynomial x3- 4x2+ 2x + 1. Using long division,

we have the following:

22— 3r— 1
r— 1) a3—4d2?4 224+ 1
a3— a2
— 3224 o
—32°4+ 3z
— x4+ 1
— x+ 1

Hence x3-4x2+ 2x + 1 = (x - 1)(x2- 3x - 1). The other two roots of the equation are given by the two

roots of xX2- 3x -1 =0. These are

3£v9+4 3£VI13
r= =
2 2 .

Example 2. Consider the equation x3+2x2-5x-6 = 0. It is easy to see that x = -1 is a solution of this cubic
polynomial equation. It follows that x + 1 is a factor of the polynomial x3 + 2x2- 5x - 6. Using long division,

we have the following:

24+ — 6
x4+ 1) 234222~ 52— 6
i 22
r2— Bx
972+ €T
— br— 6

— bxr— 6
Hence x3+ 2x2- 5x - 6 = (x + 1)(x2+ x - 6). The other two roots of the equation are given by the two

roots of X2+ x — 6 = 0. These are

—-14+yT+24 145
N 2 T2

T

=2o0r —3

Example 3. Consider the equation x4+ 7x3 - 6x2- 2x = 0. It is easy to see that x =0 and x = 1 are

solutions of this biquadratic polynomial equation. It follows that x(x - 1) is a factor of the polynomial x* +
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7x3- 6x2- 2x. Clearly we have x4+ 7x3- 6x2- 2x = x(x3 + 7x2- 6x - 2). On the other hand, using long

division, we have the following:

2+ Sx+ 2

r— 1) 2*472%— 6a—
3
x

2
- x°

12— 6
82— 8z
20— 2

20— 2

Hence x4+ 7x3-6x2- 2x = x(x - 1)(x2+ 8x + 2). The other two roots of the equation are given by the two

roots of X2+ 8x + 2 =0. These are

_ A _ =4
o Sj:\z/(:lL 8 _ 8:&:2@274:&@
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ACTIVITIES FOR CHAPTER IV

ACTIVITIES IV.1: Solve each of the following equations:

}93‘—8_1 })5—23‘_9 C:.r+l4_

Y Rr—6 2 T By T
2r — 2 10 — 2x 3r —4 4r + 1

1 —2r — 4 \ _

d) —3—+—5 . e T R —

ACTIVITIES IV.2: A rectangle is 2 metres longer than it is wide. On the other hand, if each side of the
rectangle is increased by 2 metres, then the area increases by 16 square metres. Find the dimension of
the rectangle.

ACTIVITIES IV.3: A rectangle is 10 metres wider than it is long. On the other hand, if the width and length
are both decreased by 5 metres, then the area of the rectangle decreases by 125 square metres. Find
the dimension of the rectangle.

ACTIVITIES IV.4: The lengths of the two perpendicular sides of a right-angled triangle differ by 6
centimetres. On theother hand, if the length of the longer of these two sides is increased by 3 centimetres
and the length of the shorter of these two sides is decreased by 2 centimetres, then the area of the right-
angled triangle formed is decreased by 5 square centimetres. What is the dimension of the original
triangle?

ACTIVITIES IV.5:Solve each of the following systems of linear equations:

a) 3r — 2y +4z =11 b) Sz + 2y + 42 =35 c) 3r+4y+2:=9 d) e +4y —32=2
2r + 3y + 32 =17 2r —3y+22=19 Sr—2y+42=7 r—2y+2:2=1
dr +6y—22=10 3r+5y+32=19 2r+ 6y —2z=26 T+ 6y —5H2x=2

ACTIVITIES IV.6: Determine the number of solutions of each of the following quadratic equations and

find the solutions:
22 —84r +98 =0
- 20 —48 =0

a) 3z —z+1=0 b) 422 + 12249 =0 c) 182° —84x 498 =0
d) 622 —13x+6 =0 e) 5r? +2x4+1=0 f) 22 —2r —48=0
g) 1222 + 120 +3 =0 h) 222 — 327 4+ 126 =0 i) 322 + 62 +15=0

ACTIVITIES IV.7: Factorize each of the following expressions:

a)14x2+19x -3 b) 6x2+ x - 12 ) (5 ‘;r+1)2—201~
Yy — xy — 6y
d) (2x +1)2+ X(2 + 4x) e) 4x3+ 9x2+ 2x )

g) 8x — 2xy - x)?

ACTIVITIES IV.8:Simplify each of the following expressions, showing all the steps of your argument
carefully:

2 + 2 - T B 2 r—3 B xr—2
r—2 x-5 22-3x42 =x-1 2 -3r4+2 22—-4x 43
a) 1+ 2 1 2 2 ) 2
x trxy +y | xr —ay+y day r —xy y
C) 73— ,y:% - z—y d) (.’I‘ _ y)z + 2 — y;z (1 + .T)
ACTIVITIES IV.8: Study each of the following equations for real solutions:
a) x3-6x2+11x-6=0 b) x3-3x2+4 =0 C) X3+ 2x2+6x+5=0

[
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d)x-x-x+1=0

e)x3+2x2-x-2=0

50
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CHAPTER V: MATRICES

Consider the two linear equations:

3+ 4y =11
S+ Ty = l.‘).’

It is easy to check the two equations are satisfied when x = 1 and y = 2. We can represent these two

linear equations in matrix form as
3 4 ry _ (11
5 7 y ]\ 19

C)0) (2 wme GE)-(H)

represent respectively the information 3x + 4y = 11 and 5x + 7y = 19. Under this convention, it is easy to

G O)-0)
(L NED-(Y

where, under a convention slightly more general to the one used earlier, we have representing

respectively (7x3) + ((~4)x5) = 1, (7x4) + ((~4)x7) = 0, ((~5)x3) + (3x5) = 0 and
(-5)x4)+ (3x7)=1.

ot

where we adopt the convention that

for every x,y €R. Next, observe that

. It now follows on the one hand that,
T —4 3 4 x\ (1 0 T\ [
-5 3 50T y /) N0 1 v, \y
and on the other hand that
7T =4\ (3 4\ [(z\ [ 7 —-4\[11\ [1
-5 3 5 7)\y)  \=5 3 19) \2

The convention mentioned in the example above is simply the rule concerning the multiplication of
matrices. The purpose of this chapter is to study the arithmetic in connection with matrices. We shall be
concerned primarily with 2 x 2 real matrices. These are arrays of real numbers of the form

(G-u ﬂl?)

21 d22 )

consisting of two rows counted from top to bottom, and two columns counted from left to right. An
entry ajthus corresponds to the entry in row i and column j.

V.1: ARITHMETIC OF MATRICES
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*ADDITION AND SUBTRACTION.

) (

(

are two 2 x 2 matrices. Then

b1y
bay

ai2 bia

a2

a1y
91

)

az + bia
s + bao

bao

ay + by

A+B: (agl +Z)21

) andA_B(

a1 7bll aJQ*bIQ

)

a1 — bar  asg — bao

In other words, we perform addition and subtraction entrywise. The operations addition and

subtraction are governed by the following rules:
(a) Operations within brackets are performed first.

(b) Addition and subtraction are performed in their order of appearance.
(c) A number of additions can be performed in any order. For any 2 x 2 matrices

A,B,C, we have
A+(B+C)=(A+B)+CandA+B=B+A.

Example 1. We have
3 4 2 4 1 2\\ _ /(3 4 3 6\ _ [0 =2
5 7)) \\a 7))t 3 6))7\5 7)) \7 13)7 2 -6
and 3 4 2 4 12 1o 12 2 2
(5 7)_(4 7)+(3 6):(1 (1)+(3 6):(4 6)'
Example 2. We have
3 4 2 4 1 2)\ (3 4 3 6 (6 10
s 7))\ 7)) s 6)) 7\ 7)) T 7 13)7 12 20
and 3 4 2 4 1 2 5 8 12 6 10
((J 7)*(4 7))*(3 6)2(9 14)*(3 6)2(12 20

Example 3.Like real numbers, it is not true in general that A - (B - C)

)-(()-(
)= )

4
7

2 4
4 7

ot

and 1

7

2 4
47
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Remark. The matrix

satisfies 0 + A=A+ 0= Aforany 2 x 2 matrix A, and plays a role a

addition of real numbers. This matrix 0 is called the zero matrix.

*MULTIPLICATION BY A REAL NUMBER.

S—

=(A-B)-C. Note

))=(%)
)= (% %)

—2

2 2
4 6

1 2
3 6

(

1 2
3 6

-2
—6

nalogous to the real number 0 in

52



Suppose that
Ao (an a2 )
a1 @22

is a 2 x 2 matrix, and that ris a real number. Then

ra raq:
A= 11 12
Tz,  Taoo

In other words, we multiply each entry of A by the same real number r. This operation is governed by
the following rules:
(a) Operations within brackets are performed first.
(b) If there are no brackets to indicate priority, then multiplication by a real number
takes precedence over addition and subtraction.
(c) A number of multiplications by real numbers can be performed in any order.

For any 2 x 2 matrix A and any real numbers r,s €R, we have (rs)A = r(sA).

(d) For any 2 x 2 matrix A and any real numbers r,s €R, we have (r+ s)A=rA +

SA.

(e) For any 2 x 2 matrices A,B and any real number r €R, we have (A + B) =rA +

rB.
Example 3. We have

(5 7) (5 3) =25 )= =)
Example 4. We have
(3 7) 20 3))=2(G )+ (6 8)=s(0 i)=& %),
Example 5. We have
(52 1)) =2(% 2)= (5 %) =s(2 D)=een (2 1)

Example 6. We have

3.4\ (3 4\ _ (15 20 6 8\ _ (9 12\ _ (3 4\ _ . .. (3 4
5(5 7)_ (5 7)_(25 35)_(10 14)_(15 21)_3(5 7)_(5 2)(5 7).
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*MULTIPLICATION OF MATRICES.

Suppose that

ayy a2
A=
21 422

are 2 x 2 matrices. Then

AR = (a1 a2 bin b2\ _ [ aiiby
a1 U922 bay  bag )\ asibyy

This operation is governed by the following rules:

+ aj9bo;
+ asabay

(a) Operations within brackets are performed first.

(b) If there are no brackets to indicate priority, then multiplication takes

precedence over addition and subtraction.

(c) For any 2 x 2 matrices A,B,C, we have (AB)C = A(BC).

(d) For any 2 x 2 matrices A,B and any real numbers r €R, we have r(AB) =

= A(rB).
(e) For any 2 x 2 matrices A,B,C, we have A(B + C)

Remarks
Observe that we have

) B
and

(n

a11b1a + ajaboo
a21b12 + asabas

bia
bao

)

=AB+ACand (A+B)C=AC + BC.

aiy  a19 by e\ [ ai1biy + agaba
. . by o)

2.The matrix

> e o
A O
[l
S

L] &11[)1) + C.',ub))

as1b11 + a9abay

e ao1byo + a9oboo

(rA)B

1. Note that the definition above agrees with the convention adopted in Example 11.1.1.

satisfies IA = Al= Aforany 2 x 2 matrix A, and plays a role analogous to the real number 1 in multiplication

of real numbers. This matrix / is called the identity matrix.

3.Multiplication of matrices is generally not commutative; in other words, given two 2x2

matrices A and B, it is not automatic that AB = BA. For example, let

12
A‘(34

Then

) B
and

(

4 3

2

1

)
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Example 7. We have

Example 8. We have

(D E N D-CHC D0
O E RN [ EE N E T N B )

Since [ is the identity matrix, we would like to find a technique to obtain, for any given 2x2 matrix A, an

and

inverse 2 x 2 matrix A-'such that AA-'= A-'A = . This is not always possible, since in the case of real
numbers, the number 0 does not have a multiplicative inverse. We therefore need a condition on 2 x 2
matrices which is equivalent to saying that a real number is non-zero.

*MULTIPLICATIVE INVERSE.

For any 2 x 2 matrix

a b
A((t d)

satisfying the condition ad — be # 0, the matrix

o1 d —b
A T ad—be \ —c a

satisfies AA-'= A~1A = . In this case, we say that A is invertible with multiplicative inverse A-1.

Remarks. (1) The quantity ad - bc is known as the determinant of the matrix A. The result above
says that any 2 x 2 matrix is invertible as long as it has non-zero determinant.
(2) If two 2 x 2 matrices A and B both have non-zero determinants, then it can be shown that the matrix

product AB also has non-zero determinant. We also have (AB)™'= B-1A-1.

Example 9.Recall Example1. It is easy to check that
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3 4
Example 10.The matrix(6 8) has determinant 0 and so is not invertible.

Example 11:
Consider the matrices

3 4 2 3
A(5 7) and B(3 6).

Then ) .
Al = (75 _34) and Bl = 13 (63 _23) .
Note also that g (3 A) (2 3\ _ (18 33
“\s5 7)\3 6) \31 57)°
We have 1 (57 -33 1/6 -3 7T —4 141
(AB) :g(_:ﬂ 18)25(—3 2)(—5 3):‘8 4

V.2.:APPLICATION TO LINEAR EQUATIONS

We now return to the problem first discussed in previuos section. Consider the two linear equations
ar + by = s,

cx + dy = {, ,where a,b,c,d,s,t €R are given and x and y are
the unknowns. We can represent these two linear equations in matrix form:

a b r\ (s

c d y) \t).
If ad-bc+0, then the 2 x 2 matrix on the left hand side is invertible. It follows that left
hand side is invertible. It follows that there exist real numbers a,8,y,0 €R such that

o [ a by (1 0
~ a)\e a) " \o 1)

Hence
and

giving the solution

Example 12: Suppose that
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4+ y=32
3z +2y =70,

The two linear equations can be represented in matrix form

(3)()-()

1 1

Note now that the matrix (3 2) has determinant -1 and multiplicative inverse :

( 4)

[t follows that,

()= 4) (%)= (=)

r =06 and y = 26.
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ACTIVITIES FOR CHAPTER V

ACTIVITY V.1: Write each of the following systems of linear equations in matrix form:

a) 3r —8y =1 b) 4z — 3y = 14 c) br — 2y =14 d) 5z + 2y =4
20+ 3y =9 9r — 4y = 26 20+ 3y =12 Tr+3y=2>5

ACTIVITY V.2: Let
(12 [ . (4 3
A_([J 1)' B‘( ('_(5 1)

a) Verifythat(A+B)+C=A+(B+C)and A+ B=B+A.
b) Find A + 3Band 7A - 2B + 3C.

[ T ]
=] &=
S

c) Verify that (AB)C = A(BC).

d) Is it true that AB = BA? Comment on the result.
e) Find A-'and B-".

f) Find (AB)™', and verify that (AB)-'= B-1A-1.

ACTIVITY V.3: Solve each of the systems of linear equations in Question 1 by using inverse matrices
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CHAPTER VI: FUNCTIONS AND GRAPHS

INTRODUCTION

The function concept is one of the most important ideas in mathematics. The
study of mathematics beyond the elementary level requires a firm understanding of a basic list of
elementary functions, their properties, and their graphs. Then we will learn how to apply them to
different models in our everyday life.

V1.1: FUNCTIONS

A function is a correspondence between two sets of elements such that to each element
in the first set, there corresponds one and only one element in the second set (or a function is a rule
that assigns to each object in a set A exactly one object in a set B-see figure 1). The set A is called the
domain of the function, and the set of assigned objects in B is called the range.

I Output
machine fix)
(a) A function 23 2 mapping (bj A function as a machine

Figure 1: Interpretations of the function f{x).

Tables 1 and 2 specify functions since to each domain value, there corresponds exactly one
range value (for example, the cube of -2 is -8 and no other number). On the other hand, Table 3 does
not specify a function since to at least one domain value, there corresponds more than one range value
(for example, to the domain value 9, there corresponds -3 and 3, both square roots of 9).

able 1 Table 2 Table 3

Domain Range Domain Range Domain Range
Number Cube Number Square ""'r“’”b{’r mm T

60— 0

_1 _E _2 ——e _1 I 1

—1 —1 —1 - = ] —— — e —1

0 0 0 . 1 2

1 1 I - - 0 S s

9 - 3

2 8 2 o —— 3

For most functions, the domain and range will be collections of real numbers and the function
itself will be denoted by a letter such as f. The value that the function f assigns to the number x in the

domain is then denoted by f (x) (read as“f of x”), which is often given by formulas, such as :
fix) = X +4
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More complicated equations in two variables, such as y =9 - x2or x2 = )4, are more difficult to graph.
To sketch the graph of an equation, we plot enough points from its solution set in a rectangular
coordinate system so that the total graph is apparent, and then we connect these points with a smooth
curve. This process is called point-by-point plotting. Let us sketch the previous equations:

A f(x)=y=9-x2

Make up a table of solutions—that is, ordered pairs of real numbers that satisfy the given
equation. For easy mental calculation, choose integer values for x.

After plotting these solutions, if there are any portions of the graph that are unclear, plot
additional points until the shape of the graph is apparent. Then join all the plotted points with a smooth
curve (Fig. 2). Arrowheads are used to indicate that the graph continues beyond the portion shown
here with no significant changes in shape.

L R b

L
Figure 2: Graph of y =9 - x2

(B) x2=y!
Again we make a table of solutions—here it may be easier to choose integer values for y and
calculate values for x. Note, for example, that if y = 2, then x = {4; that is, the ordered pairs (4, 2) and (-

4, 2) are both in the solution set.

X +9 +4 +1 0 +1] 4 +9
¥ -3 -1 -1 0 I 2 3

We plot these points and join them with a smooth curve (Fig. 3).
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S EE.

i
L

Figure 3: x2= 4

The input values are domain values, and the output values are range values. The
equation assigns each domain value x a range value y. The variable x is called an independent
variable (since values can be “independently” assigned to x from the domain), and y is called a
dependent variable (since the value of y “depends” on the value assigned to x). In general, any
variable used as a placeholder for domain values is called an independent variable; any variable that
is used as a placeholder for range values is called a dependent variable.

If in an equation in two variables, we get exactly one output (value for the dependent
variable) for each input (value for the independent variable), then the equation, specifies a function.
The graph of such a function is just the graph of the specifying equation. If we get more than one
output for a given input, the equation does not specify a function.

Example 1: Determine which of the following equations specify functions with independent variable x.
(A)4y-3x=8, xarealnumber  (B)y2-x2=9, x areal number

Solution
(A) Solving for the dependent variable y, we have
dy — 3x =18
4y = 8 + 3x (1)
3
y=2+ 17

Since each input value x corresponds to exactly one output value (y = 2 + 3/4x), we see that equation
(1) specifies a function.
(B) Solving for the dependent variable y, we have

?

¥ — “=0
¥y =9+ x? (2)
y= V0 4+ ¥
Since 9 + x2is always a positive real number for any real number x, and since,each positive real
number has two square roots,* then to each input value x there corresponds two output values :
(y=-V9 +x*andy = V9 + x?)

For example, if x = 4, then equation (2) is satisfied for y = 5 and for y = -5. So equation (2) does not
specify a function.
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Since the graph of an equation is the graph of all the ordered pairs that satisfy the
equation, it is very easy to determine whether an equation specifies a function by examining its graph.
The graphs of the two equations we considered in example 1 are shown in figure 4. In figure 4 A, we
notice that any vertical line will intersect the graph of the equation 4y - 3x = 8 in exactly one point. This
shows that to each x value, there corresponds exactly one y value, confirming our conclusion that this
equation specifies a function. On the other hand, Figure 4B shows that there exist vertical lines that
intersect the graph of y2 - x2=9in two points. This indicates that there exist x values to which
there correspond two different y values and verifies our conclusion that this equation does not specify a
function:

¥ ¥
3 &
8 , ) e , 4
| 1 | F
1 - | A
I P T 1.4
[
= =i =t T R 3 T
] —H--- -
1 A
1 e l -
- ' A o '
e N
Figure 4 A Figure 4 B

These observations are generalized in this theorem- vertical-line test for a function:

“‘An equation specifies a function if each vertical line in the coordinate system passes
through, at most, one point on the graph of the equation.If any vertical line passes through two or more
points on the graph of an equation, then the equation does not specify a function”

Functions are often defined using more than one formula, where each individual formula
describes the function on a subset of the domain. A function defined in this way is sometimes called a
piecewise-defined function. Here is an example of such a function:

Example 2:

1
Find f(—?),ﬂl}, and f(2) if

1
fixy=4x—1
41 ifr=1

ifr="1

1
SINCe x = 3 satisfies x << 1, use the top part of the formula fo find
ny__t 1t _ 2
f_ 2] —-12-1 -3 3

However. x = 1 and x = 2 satisfy x = 1, so f(1) and f(2) are both found by using the
bottom part of the formmla:

f)=317+1=4 and Ff2)=327+1=13
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Unless otherwise specified, if a formula (or several formulas-see above) is used to define a
function f, then we assume the domain of fto be the set of all numbers for which f(x) is defined (as a
real number). We refer to this as the natural domain of f.

Determining the natural domain of a function often amounts to excluding all numbers
x that result in dividing by 0 or in taking the square root of a negative number. This procedure is
illustrated in example 3:
Find the domain and range of each of these functions.

a. fix) = b. git) = wit—12

x—3
Solution

a. Since division by any number other than 0 is possible, the domain of fis the set of all
numbers x such that x-3# 0; that is, x #3. The range of fis the set of all numbers y except 0, since for

any y= 0, there is an x such that in particular,
x=3+1
y .
b.Since negative numbers do not have real square roots, g(f) can be evaluated only when {-2 > 0 so
the domain of g is the set of all numbers t such that £=2.The range of g is the set of all nonnegative
numbers, for if y=0 is any such number, there is a t such that,

¥y = Vi — 2; namely, f = y* + 2.
VI.2: FUNCTIONS USED IN ECONOMICS

There are several functions associated with the marketing of a particular commodity:
The demand function D(x) for the commodity is the price p= D(x) that must be charged for each unit
of the commodity if x units are to be sold (demanded).
The supply function S(x) for the commodity is the unit price p=S(x) at which producers are willing to
supply x units to the market. The revenue R(x) obtained from selling x units of the commodity is given
by the product: R(x) = (number of items sold) (price per item)=xp(x)

The cost function C(x) is the cost of producing x units of the commodity. The profit
function P(x) is the profit obtained from selling x units of the commodity and is given by the difference:

P(x) = revenue — cost
= Ri{x) — Cix) = ap(x) — C{x)

Generally speaking, the higher the unit price, the fewer the number of units demanded, and vice versa.
Conversely, an increase in unit price leads to an increase in the number of units supplied. Thus,
demand functions are typically decreasing (“falling” from left to right), while supply functions are
increasing (“rising”), as illustrated below:

'
»

Supply

Dremand

o 0

Example:
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Market research indicates that consumers will buy x thousand units of a particular kind of coffee maker

when the unit price is
p(x)=-0.27x — 51 dollars.
The cost of producing the x thousand units is
C(x)=2.23x2+3.5x +85 thousand dollars.
a. What are the revenue and profit functions, R(x) and P(x), for this production process?
b. For what values of x is production of the coffee makers profitable?

Solution
a. The revenue is

R(x) = xp(x) = —0.27x" + 5lx
thousand dollars, and the profit 1s
P(x) = Rix) — C{x)
= —0.27x" + 5lx — (2.23x" + 3.5x + 85)
= —2.5x" + 47.5x — 85

thonsand dollars.

b. Production 1s profitable when P(x) = 0. We find that
S5x” + 47.5x — 85
S(x" — 19x + 34)
S(x — 2)x — 17)

Pix)=—

e

aince the coefficient —2.5 13 negative, it follows that Fi(x) = 0 only if the terms
(x —2) and (x — 17) have different signs: that 15, when x — 2 >0 and
x — 17 < 0. Thus, production 15 profitable for 2 << x << 17.
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CHAPTER VII: INTRODUCTION TO LIMITS

INTRODUCTION

How do algebra and calculus differ? The two words static and dynamic
probably come as close as any to expressing the difference between the two disciplines. In algebra, we
solve equations for a particular value of a variable—a static notion. In calculus, we are interested in
how a change in one variable affects another variable—a dynamic notion.Isaac Newton (1642-1727)
of England and Gottfried Wilhelm von Leibniz (1646-1716) of Germany developed calculus
independently to solve problems concerning motion. Today calculus is used not just in the physical
sciences, but also in business, economics, life sciences, and social sciences—any discipline that seeks
to understand dynamic phenomena. We introduce the derivative and the integral, the two key concepts
of calculus. Both key concepts depend on the notion of limit, explained here and will consider many
applications of limits and derivatives.

Vil.1: BRIEF REVIEW OF FUNCTIONS GRAPHS

The graph of the function y = f(x) = x + 2 is the graph of the set of all ordered
pairs (x, f(x) ). The figure 1 shows the ordered pairs
(—1.f(—1)). (1.f(1)).and (2.£(2))
plotted on the graph of f:

—— 2 2N =02. %
et
( — 3 |
f"“ : | |
2 I

fl- =1~
AT
—4 -1 1 2 3 4

Figure 1: Graph of y = f{x) = x + 2

Now let us find of a function from Its Graph in completing the following table, using the given graph of the

function g.

KL
F
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To determine g(x), proceed vertically from the x value on the x axis to the graph of g and then
horizontally to the corresponding y value g(x) on the y axis (as indicated by the dashed lines).

g x  glx)
i -2 40
1 25

< 315
410

Matched Problem: Complete the following table, using the given graph of the function h.

VII.2-LIMITS: A GRAPHICAL APPROACH

We introduce the important concept of a limit through an example, which leads to an

intuitive definition of the concept.
Let analyse a Limit of f(x) = x + 2 and discuss the behavior of the values of f(x) when x is close to 2.

We begin by drawing a graph of fthat includes the domain value x = 2 (fig. 2):

e T
] -

Attt
/ 0 1+

Figure 2: Domain value x=2 in f(x)= x + 2
In Figure 2, we are using a static drawing to describe a dynamic process. This requires careful
interpretation. The thin vertical lines in Figure 2 represent values of x that are close to 2. The
corresponding horizontal lines identify the value of f(x) associated with each value of x. [the previous
example dealt with the relationship between x and f(x) on a graph.] The graph in Figure 2 indicates that
as the values of x get closer and closer to 2 on either side of 2, the corresponding values of f(x) get
closer and closer to 4. Symbolically, we write

lim f(x) = 4
This equation is read as “The limit of f(x) as x approaches 2 is 4.” Note that f(x) = 4. That is, the value of
the function at 2 and the limit of the function as x approaches 2 are the same. This relationship can be

expressed as
lim f(x) = f(2) = 4
Graphically, this means that there is no hole or break in the graph of fat x = 2.
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Matched Problem: Let f(x) = x + 1. Discuss the behavior of the values of f(x) when x is close to 1.
We now present an informal definition of the important concept of a limit and will write:

!H:ﬂ_ﬂ:r} =L or f(x)—L as x—c

if the functional value f(x) is close to the single real number L whenever x is close,

but not equal, to ¢ (on either side of c).

Note: The existence of a limit at ¢ has nothing to do with the value of the function at c. In fact, ¢ may
not even be in the domain of f. However, the function must be defined on both sides of c.

*To make the informal definition of limit precise, we must make the word close more
precise. This is done as follows: We write
We write lim, ., f(x) = Lif, foreache > 0, there exists ad > 0 suchthat |f(x) - L| < e
whenever 0 << |x —¢| < d
This definition is used to establish particular limits and to prove many useful properties of limits that will
be helpful in finding particular limits.

The next example involves the absolute value function:

_ —x ifx<0
f) = 15l = { v ifx=0

The graph of fis shown in figure 3 below:
Jix)

5

Figure 3: f(x) = x|
Let analyze a limit of
h(x) = |x|/x and explore the behavior of
h(x) for x near, but not equal, to 0. We have to find lir% h(x) ifit exists.
X

The function h is defined for all real numbers except 0 [#(0) = |0[/0 is undefined]

For example,
h(-2 -
(=2)="3 =

3

]

= 1

Note that if x is any negative number, then h(x) = -1if x < 0, then the numerator | x | is positive but the
denominator x is negative, so
h(x) = |x|/x = —1)
If x is any positive number, then h(x)= 1 (if x > 0, then the numerator| x | is equal
to the denominator x,
h(x) = |x|/x = 1).
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Figure 4 illustrates the behavior of h(x) for x near O:

hix)
&

L

T4

Figure 4: h(x)= | x [/x

Note that the absence of a solid dot on the vertical axis indicates that h is not defined when x = 0.When

x is near 0 (on either side of 0), is h(x) near one specific number? The answer is “No,”
because h(x) is -1 for x < 0 and 1 for x >0. Consequently, we say that
| x

lim —— does not exist
=0 x

Neither h(x) nor the limit of h(x) exists at x = 0. However, the limit from the left and the limit from the
right both exist at 0, but they are not equal.

Matched Problem:

Graph
xr—2
xr—2
and find }cif% h(x) if it exists

hix) =

In previous example, we see that the values of the function h(x) approach two different
numbers, depending on the direction of approach, and it is natural to refer to these values
as “the limit from the left” and “the limit from the right.” These experiences suggest that the notion of
one-sided limits will be very useful in discussing basic limit concepts.|f no direction is specified in a
limit statement, we will always assume that the limit is two-sided or unrestricted.

“For a (two-sided) limit to exist, the limit from the left and the limit from the right
must exist and be equal. That is,

!m}f{l} = L if and only if IL_]Lr':j fix) = l_lim_ flx) =L

In citated example, since the left- and right-hand limits are not the same:
|iJ'EL M = —1 and lin_}_ L =1
I ; = X

) X )
lln‘_ljl —— does not exist
—0 x
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Example 4-Analyzing Limits Graphically:
Given the graph of the function fin figure 5, discuss the behavior of f(x) for x near (A) -1, (B) 1, and
(C) 2.

A)Since we have only a graph to work with, we use vertical and horizontal lines to relate the values of x
and the corresponding values of f(x). For any x near -1on either side of -1, we see that the
corresponding value of f(x), determined by a horizontal line, is close to 1.

fix)

dN Jim /1) = |
li = 1

: A, S

I L
L 1 L
T T T
L]
1%
1 I_:l
=
—
-
p— —— —— ——
Il
—

[

-3 — —] 1 | 7 3

(B) Again, for any x near, but not equal to, 1, the vertical and horizontal lines indicate that the
corresponding value of f(x)is close to 3. The open dot at (1, 3),together with the absence of a solid dot
anywhere on the vertical line through x = 1, indicates that f{(1) is not defined.

fixh
44 \ I]ip]l flx) =3
14 I]il"ll'l_ flx) =3
i) _ lim f(x) = 3
f( 1) not defined
+* 0
R t— | +— 3
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(C) The abrupt break in the graph at x = 2 indicates that the behavior of the graph near x = 2 is more
complicated than in the two preceding cases. If x is close to 2 on the left side of 2, the corresponding
horizontal line intersects the y axis at a point close to 2. If x is close to 2 on the right side of 2, the
corresponding horizontal line intersects the y axis at a point close to 5. This is a case where the

one-sided limits are different.
fix)

o - Jirg f(x) =
| lig, f(x) = 5
N 2
1lE_T! f(x) does not exist
f2) =2

In Example 4B, note that lirq f (x) exists even though fis not defined at x = 1 and the graph
X—

has a hole at x = 1. In general, the value of a function at x = ¢ has no effect on the limit of the function
as x approaches c.

VII.3-AN ALGEBRAIC APPROACH OF LIMITS

Graphs are very useful tools for investigating limits, especially if something unusual happens
at the point in question. However, many of the limits encountered in calculus are routine and can be
evaluated quickly with a little algebraic simplification, some intuition, and basic properties of limits.
The following list of properties of limits forms the basis for this approach:

Let fand g be two functions, and assume that
mflx) =L  lmg(x) =M

where L and M are real numbers (both limits exist). Then

1. lim k = k for any constant k

=+

2. !@ xX=c

3. !mé [fix) + g(x)] = lim f( (x) + lim g( (x) =L+ M
4. lim [fix) —g(x)] = lim f( (x) — lim g( (x) =L M
5 !EE kf(x) = kl nfl[ ') = kL for any constant k

6. tim [7(x) - (x)] = [lim f(x) ][ lim g(x)] = LM

x ]1|11.f[x}
7. tim {8 e ~L M=o
meg(x)  lime(x) M

8. !@ 'Uf x) =V !.i_llﬂ_f{x] = \T/E L = 0 for n even
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Each property is also valid if x —c is replaced everywhere by x— ¢ or replaced everywhere by
X —ct
EXAMPLE 5- USING LIMIT PROPERTIES

Find lim(x2-4x)
x—3

Solution
lim (,1'3 — 4x) |= lim xr — lim 4x Property 4
=3 =3 =3
= (iﬂﬂ. .r) . (Jm x) — 4!9& x| Properties 5 and €
= (lin 1) -4 Iinﬁ x Definition of exponent
= =
=3 -4.3=-3

So, omitting the steps in the dashed boxes,

lim (2" — 4x) =3 - 4:3=-3
If f(x) =x2-4x and c is any real number, then, just as in example 5
lim f{x) = lim (x? —4x) = & — 4e = fle)

So the limit can be found easily by evaluating the function fat c. This simple method for finding limits is
very useful, because there are many functions that satisfy the property. This simple method for finding

limits is very useful, because there are many functions that satisfy the property
lim f(x) = f(c)
Any polynomial function

flx) = a.x" + r::,_._].r"'l + - +oay

satisfies that property for any real number c. Also, any rational function
. n(x)
") =90

where n(x) and d(x) are polynomials, satisfies the previous property where d(c)+ 0 and c is a real
number and we will have:
1. !imf{x] = f(c) for fany polynomial function.
I=*c
2. lim r(x) = r(c) for r any rational function with a nonzero denominator

I=*C

atx = .
EXAMPLE 6- EVALUATING LIMITS

Find each limit.

(A) lim (x* — Sx — 1) (B) lin 2x?

x——1

+ 3 (€) lim I 1

Solution:
(A) !i_hmj{r* —5x—-1)=2-52—-1=-3

®) lim V2e +3 = Viim (27 + 3)

71



(B) lim V22 + 3=V lim (2 + 3)

= WV2(-1)*+3

~ /5
, . o 2-4
O 1 =341
8
13
Matched Problem: Find each limit.
)
(A) lim (x*—2x+3)  (B) lim V3x®> — 6 (C) lim —-
x=—] x=1 X=+-1 y=
Example 7: Evaluating Limits
Let
2+1 ifx<2
flx) = {x— I ifx =2
Find:
(A) lim f(x) (B) lim. f(x) (C) lim f(x) (D) f(2)
Solution:
(A) lim f(x) = lim (x° + 1)

=22 + 1 =5
B) Jim. f(x) = Jlim, (x — 1)
(C) Since the one-sided limits are not equal, lin% £ (x) does not exist.
xX—

(D) Because the definition of f does not assign a value to ffor x = 2, only for x <2 and x >2, f(2)does
not exist.

Matched Problem:
Let
) 2x+ 3 ifx <35
Jx) = {—r 112 ifx >S5
Find:
(A) lim fix) (B) 1_li1'[_}j{.1r] (C) !i_hn;if[.r) (D) f(5)
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CHAPTER VIII: INTRODUCTION TO DIFFERENTIATION

VIIl.1: TANGENT TO A CURVE

Consider the graph of a function y = f(x). Suppose that P (xo, yo) is a point on the curve y = f(x).
Consider now another point Q (x4, y1) on the curve close to the point P (xo, yo). We draw the line joining
the points P(xo, yo) and Q(x1, y1), and obtain the picture below.

] y = flx)

O,

P ag, yy)

Clearly the slope of this line is equal to:

Y1 — Yo JS(x1) — f(xo)

1 — o o 1 — To
Now let us keep the point P(xo,)0) fixed, and move the point Q(x1,y1) along the curve towards the point
P. Eventually the line PQ becomes the tangent to the curve y = f(x) at the point P(xo,)0), as shown in the
picture below.

y y = flx)

We are interested in the slope of this tangent line. Its value is called the derivative of the function y =
f(x) at the point x = xo, and denoted by

dy
dax

rF=on

or f'(xo).
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In this case, we say that the function y = f(x) is differentiable at the point x = xo.

Remark. Sometimes, when we move the point Q (x+, y1) along the curve y = f(x) towards the point
P(xo,)0), the line PQ does not become the tangent to the curve y = f(x) at the point P(xo, y0). In this case,
we say that the function y = f(x) is not differentiable at the point x = xo. An example of such a situation is

given in the picture below.

v v= flx)

T

P (x0.vo0)

Note that the curve y = f(x) makes an abrupt turn at the point P(xo,yo).

Example 1: Consider the graph of the function y = f(x) = x2.

Here the slope of the line joining the points P(xo, o) and Q(x1,y1) is equal to

2
Y1 — Yo €ry) — Ty Tr{ — &
i~y :f( ) — f(xo) _ N 0 — 2, 4 2
&I o I Tp &I Io

It follows that if we move the point Q(x1,y1) along the curve towards the point P(xo,0), then the slope of
this line will eventually be equal to xo + Xo = 2xo Hence for the function y = f(x) = x2, we have
dy " ,
— = f'(x0) = 2x.

dr|,._..
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In particular, the tangent to the curve at the point (1 1) has slope 2 and so has equation y = 2x - 1, whereas
the tangent to the curve at the point (-2,4) has slope -4 and so has equation y = -4x - 4.

Yy

y

Example.2: Consider the graph of the function y = f(x) = x3. Here the slope of the line joining the
points P(xo,y0) and Q(x1,y1) is equal to:
yi—yo _ f(@1) — f(wo) _ o} —aj

2 2
. = = X7+ T1To + T
r1 — To r1 — To r1 — To .

It follows that if we move the point Q(x1,y1) along the curve towards the point P(xo, o), then the slope of
this line will eventually be equal to:
.rﬁ + g + .rE] = 3.1"5.
. Hence for the function y = f(x) = x3, we have:
dy L 5
— = xy) = 3xy.
dr }P (p) 0

I=Ip

In particular, the tangent to the curve at the point (0,0) has slope 0 and so has equation y = 0, whereas
the tangent to the curve at the point (2,8) has slope 12 and so has equation y = 12x - 16.

Example 3: Consider the graph of the function y = f(x) = x. Here the slope of the line joining the points
P(xo,y0) and Q(x1,y1) is equal to

yi—Yo _ flz1) — f(zo) I
Ty — Io &I — Iy r1 — X

It follows that if we move the point Q(x1,y1) along the curve towards the point P(xo, o), then the slope of
this line will remain equal to 1. Hence for the function y = f(x) = x, we have

d_;;
dr
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Example 4:Consider the graph of the function y = f(x) = x'2, defined for all real numbers x = 0. Suppose

that xo> 0 and x4 > 0. Then the slope of the line joining the points P(xo,yo) and Q(x1,y1) is equal to

yi—y  fle) = flxo) 2% —zy? 1

- - P P , , - 2 1/
r1 — Xp xr1 — 2o T — Xy '2}/ + .’L‘[I]/Z

It follows that if we move the point Q(x1,y1) along the curve towards the point P(xo,y0), then the slope of
this line will eventually be equal to

1 1 1 _yp

= =
1/2 1/2 7 4 1/2 0
;:1:“/ + .’I'”/ 2.’17(]/ 2

Hence for the function y = f(x) = x'2, we have

dy —1/2

- — I}PI"::J"[]'] = 1_1]-‘[}
dx _—— 2

The above four examples are special cases of the following result.

VIIl.2: DERIVATIVES OF POWERS.
Suppose that n is a fixed non-zero real number. Then for the function y = f(x) = x» we have
dy

— = f'(z) = nz"™
dzr Fx)

1

for every real number x for which x™-1is defined. Here and henceforth, we shall slightly abuse our notation
and refer to f ‘(x) as the derivative of the function y = f(x), and write

d_y = f'(x).
dax

Example :5 For the function y = f(x) = x4, we have

dy S S
dr F(=) 4

for every positive real number x. The rule concerning derivatives of powers does not apply in the case n
=0.

Suppose that f{x) = ¢, where c is a fixed real number. Then f(x) = 0 for every real number x.

VIII.3:ARITHMETIC OF DERIVATIVES

Very often, we need to find the derivatives of complicated functions which are constant multiples, sums,
products and/or quotients of much simpler functions. To achieve this, we can make use of our knowledge

concerning the derivatives of these simpler functions. We have four extremely useful results.
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VIIL.3.1: CONSTANT MULTIPLE RULE.

Suppose that m(x) = cf(x), where c is a fixed real number. Then m’(x)=c f”(x) for every real number x for
which f(x) exists.

VIIl.3.2: SUM RULE.
Suppose that s(x) = f(x) + g(x) and d(x) = f(x) = g(x). Then

(@)= [f(x)+g'(x) and d(z)=["(z)-g' ()
for every real number x for which f’(x) and g(x) exist.
Example2:Consider the function h(x) = 5x2+ 3x5. We can write:  h(x) = f{x) + g(x),
where f(x) = 5x2and g(x) = 3x5. It follows from the sum rule that h’'(x) = f(x) + g’(x).

Next, the function f(x) = 5x2is a constant (5) multiple of the function x2, and so it follows from the
constant multiple rule and the rule on the derivatives of powers that

f'(z) = 5(2?) = 5(2z) = 10z.

Similarly, the function g(x) = 3x%is a constant (3) multiple of the function x5, and so it follows from the
constant multiple rule and the rule on the derivatives of powers that

g'(x) = 3(2°)' = 3(52") = 152",
Hence h'(x) = 10x + 15x4.

h(x)

= 10x + ]5:1:4_
Example 3: Consider the function h(x) = (3x)*- (2x)6. We can write: h(x) = f(x) - g(x),

where f(x) = 81x*and g(x) = 64x5. It follows from the sum rule that

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain
f(x)=324x3 and g(x)=384x5. Hence h’(x)=324x3- 384x5

The sum rule can be extended to the sum or difference of more than two functions in the natural way.
We illustrate the technique in the following the examples.

Example 4- Consider the function h(x) = (x2 + 2x)2. Then h(x) = x* + 4x3+ 4x2, and so we can write
h(x) = f(x) + g(x) + k(x),where f(x) = x4, g(x) = 4x3and k(x) = 4x2. It follows from the sum rule that

P(x) = f'(x) + ¢'(x) + K (),

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain

h'(z) = 4z° + 12x* + Bz.
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EXAMPLE 5: Consider the function
3
h = — 4 2.
(x) p + 2z

We can write: h(x) = f(x) + g(x), where f(x) = 3x~and g(x) = 2x. It follows from the sum rule that
h(x) = f'(x) + ¢'(2),
Applying the constant multiple rule and the rule on the derivatives of powers, we obtain
h'(r)=2— 372,

EXAMPLE 6: Consider the function
h(x) = 62z — % + 3;[:1/3.

We can write h(x) = f(x) = g(x) + k(x),where f(x) = 6x52, g(x) = 4x~1%2
and k(x) = 3x'3. It follows from the sum rule that
W (x) = f'(x) — g'(x) + K (2),
Applying the constant muItl/pIe rule and the rule on the derivatives of powers, we obtain
fl(x) = JT5/2 g'(x) and ¥ (2) =27 Hence:
B (z) = 1523/2 4 99—3/2 +1:*2/3‘.

Example 7: Consider the function :
h(z) =3z + V2z,
We can write
h(x) = f(x) + g(x), Where
fla) =322 and g(z) = V2% It follows from the sum rule that
W(x)=f'(z) +¢'(2),
Applying the constant multiple rule and the rule on the derivatives of powers, we obtain

. V3L V3
fl@)=5a""" gpg @ =527

' —1/2 —2/3 / 3
h (T) ) ! 3 * 4 2722,

VIII.3.3: PRODUCT RULE.

Hence:

Suppose that p(x) = fx)g(x). Then  #'(z) = f'(x)g(x) + f(2)g'(x) for every real number x for which
f(x) and g’(x) exist.

Example 9: Consider the function h(x) = (x3- x5)(x2 + x*). We can write :h(x) = f(x)g(x),
where f(x) = x3- x>and g(x) = x2+ x4. It follows from the product rule that

W (x) = f(x)g(x) + fz)g'(z),

Applying the sum rule and the rule on the derivatives of powers, we obtainf’(z) = 3x* — 52 and
g’(;?:) =2x+ 4:233. Hence:
B (2) = (32 — 5a) (2 + 2b) + (2® — 2°)(22 + 42®) = 52 — 92°
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Alternatively, we observe that h(x) = (x3-x5)(x2 +x*) = x>-x%.Applying the sum rule and the rule on the
derivatives of powers, we obtain

W (x) =5zt — 92®
as before.
The product rule can be extended to the product of more than two functions. The extension is at first
sight somewnhat less obvious than in the case of the sum rule. However, with a bit of care, it is in fact
rather straightforward.

Example 10: Consider the function h(x) = (x2+ 4x)(2x + 1)(6 - 2x2). We can write
h(x) = fx)r(x),
where f(x) = x2+ 4x and r(x) = (2x + 1)(6 - 2x2). It follows from the product rule that
W(x) = f'(@)r(z) + fla)r' (@),

We can now write
rx) = g(x)k(x),
where g(x) = 2x + 1 and k(x) = 6 - 2x2. It follows from the product rule that
r'(z) = ¢’ (2)k(2) + g(x)k (2),
Hence h(x) = f(x)g(x)k(x), and
h(z) = fl(z)g(x)k(z) + f(2)d (x)k(x) + f(2)g(x)k (z),

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and constants,
we obtain:
fllo)=2x+4,¢(®)=2and ¥(x) =—42_ Hence:
h.'(:z‘) = (22 +4)(22+ 1)(6 — 2:er) + 2(1‘2 + 4x)(6 — 22‘2) - 41‘(;er +4z)(2x + 1),

Remark.The interested reader is challenged to show that if p(x) = f(x)g(x)k(x)t(x), then

p(2) = f(@)g(@)k(@)i(z) + f(@)g (2)k(@)t(x) + f(@)g(a)k (2)t(x) + f(2)g(a)k(2)t (),

VII.3.4: QUOTIENT RULE.

Suppose that g(x) = f{x)/g(x). Then:
g (x) = g(x)f (Igz(lg(r)q ()

for every real number x for which f(x) and g'(x) exist, and for which g(x)= 0

Example 11: Consider the function
2 —1

h(.’l') = m

We can write:

h(x) = f() .
glx)

where f(x) = x2- 1 and g(x) = x3 + 2x. It follows from the quotient rule that
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Applying the sum rule, the constant multiple rule and the rules on the derivatives of
powers and constants, we obtain:

fllz) =2z and ¢'(z)=32"+2,
Hence:

W () = 2a(a® + 22) — (22 — 1)(322 + 2)

(23 + 22)2
Example 12: Consider the function:
472 +1
hir) = ———.
() 3x

where f(x) = 4x2+ 1 and g(x) = 3x. It follows from the quotient rule that

_ glx)f'(x) — f[;r]gr"{r}l

h'(x) 7202

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and constants,

we obtain f(x) = 8x and g’(x) = 3. Hence:

2422 — 3(422 + 1
h(x) = i [_.r i ].
02

VIil.4: DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS

Consider the curve y = f(x) = sinx. Suppose that P(x,f(x)) is a point on this curve. Consider another point
Q(x+h,f(x+h)), where h= 0, which also lies on this curve. Clearly the slope of the line joining the two

points P and Q is equal to:
fx+h) = f(x) sin(zx+h)—sinz
(x+h)—x h

Consider the curve y = g(x) = cosx. Suppose that R(x,g(x)) is a point on this curve. Consider another
point S(x+h,g(x+h)), where h= 0, which also lies on this curve. Clearly the slope of the line joining the

two points R and S is equal to
glx+h)—g(x) cos(x+h)—cosx
(x4+h)—2 h

We now move the point Q along the curve y = f(x) = sinx towards the point P, and move the point S

along the curve y = g(x) = cos x towards the point R.
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sin(z +h) —sinx sinzcosh +cosrsinh —sinx sin h cosh — 1

= = (cosx) x + (sinx) x

h h h h
and
cos(x +h) —cosr cosrcosh—sinrsinh — cosx ) sinh cosh —1
j = 7 :—{s1r1f]xT+(c05$Jx ]
h b ! !

When h is very close to 0, then

sin h cosh—1
Y| and

h h

a0,

so that

2 —sin .

sin(x + h) —sinz cos(x + h) — cosz
A cosr  and

h h

We have established the first two parts of the result below.

VIIL.5: DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS.

*Suppose that f(x) = sinx and g(x) = cosx and t(x) = tanx.
T(x) = tanp% = f(x)/g(x). It follows from the quotient rule that

t'(z) = 9(.?:)f’(3')(* f(z)g'(z) _ cos? +) sin? x _ l‘ — sec? 1.
92 (x) cos? cos?

—(tang x)’=sec2x
*Suppose that f(x) = cotx. Then f(x) = g(x)/f(x)= % It follows from the quotient rule that:
t(z) = f(;c)g’(a:)g— g()f(z) _ —singfcg— cos? _ 12 — —escdr,
fA(z) sin sin® z

—(cotx)=-csc:x.

*Suppose that t(x) = sec x. Then {(x) = ¢(x)/g(x), where c(x) = 1.t follows from the quotient rule

that
o) = g(a.)c’(ge)‘f ce(z)g' () _ b‘ill‘)iL' _ sinz " o .
g% (x) cos?x  cosx  cosx

—(sec x)'=tan x sec x

*Suppose that f(x) = cscx. Then t(x) = c(x)/f(x).It follows from the quotient rule that

Viz) = flz)d (z) —c(z)f'(x) _ _ftosz _ cosT 1

: 5 = ; : = —cotacscr.
/ 2(I) sin® x sinz  sina

—( csc x)=-cot x csc x

Example 13: Consider the function h(x) = (x3 - 2) (sin x + cos x). We can write
h(x) = f(x)g(x), where f(x) = x3 - 2 and g(x) = sin x + cos x. It follows that

h(x) = fx)g(x) + fx)g (x).
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Observe next that f(x) = 3x2 and g'(x) = cos x - sin x.

Hence h’(x) = 3x2(sin x + cos x) + (x3 = 2)(cos x - sin x).
Sinx

Example 14:Consider the function h(x) =
We can write  h(x) = f(x) /g(x), where f{x) = sin x and g(x) = x. It follows that
_ 9(=)f'(z) — f(=)g'(x)

h'(x) 22(2)

Observe next that f(x) = cos x and g’(x) = 1. Hence

. T CcosT — sinaT
h'(x) = ~ :

Example 15: Consider the function h(x) = sin2 x. We can write: h(x) = f(x)g(x), where
f(x) = g(x) = sin x. It follows that: h'(x) = F(x)g(x) + f(x)g’(x). Observe next that f(x) = g(x) = cos x.
Hence h(x) = cos x sin x + sin x oS X = 2 sin x COS X.

Example 16: Consider the function y = sin 2x. We can write h(x) = 2f(x)g(x), where f(x) = sin x and g(x) = cos X.
It follows that h1(x) = 2(f(x)g(x) + f(x)g/(x)). Observe next that f(x) = cos x and g/(x) = -sin x. Hence h(x) = 2(cos? x - sinzx) =
2 COS 2X.
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ACTIVITES FOR CHAPTER Vil

ACTIVITY VIII.1: For each of the following functions f(x), write down the derivative f{(x) as a function
of x, and find the slope of the tangent at the point P(1,f(1))

a) f(xr)=x* b) f(x) = 5>

c) flz) = ér‘j d) f(r) = mz

ACTIVITY VIII.2: Find the derivative of each of the following functions, using the rules concerning
the derivatives of powers, constants and sums:

a) h(zr) = 6z° b) h(z) =5z 7
¢) h(r) = 12z — 322 d) h(zr) =2° + 4z
e) h(z) =6z — 40z f) h(z) =27 +62° — 822 + 32

ACTIVITY VIIL3: Find the derivative of each of the following functions, using the rules concerning the
derivatives of powers, constants, sums and products as appropriate:

a) h(z) = (22 4 3)(2z - ) b) h(z) = (2 -z +2)(z% - 2)
¢) h(z) = (z? +5)(z - 42?) d) h(z) = (z* - 32° + 21)(32° + 4x)
¢) h(z) = (2 + 22%)z ™ f) h(z) = (z* - 2 + 7r + 8)*

ACTIVITY VIIL.4: Find the derivative of each of the following functions, using the rules concerning
the derivatives of powers, constants, sums, products and quotients as appropriate:

) h(z) = —1 b) h(z)=1+>— 2 ) h) = 22

a) Mnla _:j“'l—_rs-l—]_ D) n{xr) = T rg C !‘-J’.'—J‘+l
1+ x? v —1 T

d) h(z) = 7— ) h(z) =Ty f) h(x) = 5=
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CHAPTER IX: APPLICATIONS OF DIFFERENTIATION
IX.1: SECOND DERIVATIVES

Recall that for a function y = f(x), the derivative f(x) represents the slope of the tangent. It is
easy to see from a picture that if the derivative f(x) > 0, then the function f(x) is increasing; in other
words,f(x) increases in value as x increases. On the other hand, if the derivative f(x) < 0, then the
function f(x) is decreasing; in other words, f(x) decreases in value as x increases. We are interested in
the case when the derivative f(x) = 0. Values x = xo such that f(xo) = 0 are called stationary points.

Let us introduce the second derivative f “(x) of the function f(x). This is defined to be the
derivative of the derivative f(x). With the same reasoning as before but applied to the function f(x)
instead of the function f(x), we conclude that if the second derivative f"(x) > 0, then the derivative f(x) is
increasing. Similarly, if the second derivative f(x) < 0, then the derivative f(x) is decreasing.

Suppose that f(xo) = 0 and f(xo) < 0. The condition f{xo) < 0 tells us that the derivative
f(x) is decreasing near the point x = xo. Since f(xo) = 0, this suggests that f(x) > 0 when x is a little
smaller than xo, and that f(x) < 0 when x is a little greater than xo, as indicated in the picture
below.
Y

I

Ip

In this case, we say that the function has a local maximum at the point x = xo. This means that if we
restrict our attention to real values x near enough to the point x = xo, then f(x) < f(xo) for all such
real values x.

LOCAL MAXIMUM. Suppose that f(xo) = 0 and f(xo) < 0. Then the function f(x) has a local
maximum at the point x = Xo.

Suppose next that f(xo) = 0 and f "(xo) > 0. The condition f(xo) > 0 tells us that the
derivative f(x) is increasing near the point x = xo. Since f(xo) = 0, this suggests that f(x) < 0 when xis a
little smaller than xo, and that f(x) > 0 when x is a little greater than xo, as indicated in the picture
below. In this case, we say that the function has a local minimum at the point x = xo. This means that if
we restrict our attention to real values x near enough to the point x = xo, then f(x) = f(xo) for all such
real values x.
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LOCAL MINIMUM. Suppose that f(xo) = 0 and f(xo) > 0. Then the function f(x) has a local
minimum at the point x = Xo.

Remark. These stationary points are called local maxima or local minima because such points may
not maximize or minimize the functions in question. Consider the picture below, with a local maximum

at x = x1 and a local minimum at x = xo.
y

T
Iy Io

We also say that a point x = Xo is a point of inflection if f(xo) = 0, irrespective of whether
f(xo) = 0 or not. A simple way of visualizing the graph of a function at a point of inflection is to imagine
that one is steering a car along the curve. A point of inflection then corresponds to the place on the
curve where the steering wheel of the car is momentarily straight while being turned from a little left to a
little right, or while being turned from a little right to a little left.

Example 1: Consider the function f(x) = cos x. Since f(x) = =sin x = 0 whenever x = ki, where k €Z, it
follows that the function f(x) = cos x has a stationary point at x = ki for every k € Z. Next, note that
f(x) = —cos x. If kis even, then f” (ki) = -1, so that f(x) has a local maximum at x = k. If k is odd, then

f’ (k) = 1, so that f(x) has a local minimum at x = k:.see the graph below:
o

-2 - T 2

Example 2: Consider the function f{x) = 3x* + 4x3 - 12x2+ 5. Since

F(x) = 12x3 + 12x2 - 24x = 12x (x2 + x - 2) = 12x (x = 1) (x + 2), it follows that the function f(x) has
stationary points at x =0, x =1 and x = -2. On the other hand, we have f(x) = 36x2 +24x-24. Since
f(0) = -24, f(1) = 36 and f(-2) = 72, it follows that f(x) has a local maximum at x = 0 and local minima
atx=1and x=-2.

Example 3: Consider the function f(x) = x3 - 3x2 + 2. Since f(x) = 3x2 - 6x = 3x(x - 2), it
follows that the function f(x) has stationary points at x = 0 and x = 2. On the other hand, we have
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f(x) = 6x - 6. Since f(0) = -6 and f12) = 6, it follows that f(x) has a local maximum at x =0

and a local minimum at x = 2. Observe also that there is a point of inflection at x = 1.

Example 4: Consider the function f{x) = x4 - 2x2 + 7. Since

Fx) = 4x3 - 4x =4x(x2 - 1) = 4x(x - 1)(x + 1),it follows that the function f(x) has stationary points at x =
0, x=1and x = -1. On the other hand, we have f(x) = 12x2 -4. Since f(0) = -4, f{1) =8 and f(-1) =

8, it follows that f(x) has a local maximum at x = 0 and local minima at x = 1 and x = -1. Note also that
fix) = 0 if x = +v/1/3 ,s0 there are points of inflection at x = ++/1/3

Example 5: Consider the function f{x) = sin x - cos2 x, restricted to the interval 0 < x < 217,
ltis easy to see that f(x) = cos x + 2 cos x sin x = (1 + 2sinx) cos x. We therefore have stationary
points when cos x = 0 or sin x = -1/2. There are four stationary points in the interval 0 < x < 217, namely

T 3w im 11

—, Tr=—, r=—, r=—.

2 2 6 6

Next, note that we can write f(x) = cos x + sin 2x, so that f__(x) = 2 cos 2x - sin x. It is easy to check
that

(E)=-3  f (ED -1 (F)=3 (&F)-3

Hence f(x) has local maxima at x = /2 and x = 3m/2, and local minima at x = 7m/6 and x = 1117/.

T =

ba| 5

Y

IX.2: APPLICATIONS TO PROBLEM SOLVING.

In this section, we discuss how we can apply ideas in differentiation to solve various problems. We shall
illustrate the techniques by discussing a few examples. Central to all of these is the crucial step where
we set up the problems mathematically and in a suitable way.

Example 1: We wish to find positive real numbers x and y such that x+y = 6 and the quantity

Xxy? is as large as possible. In view of the restriction x + y = 6, the quantity xy2 = x(6 - x)2. We can
therefore try to find a real number x which makes the quantity x(6 - x)2as large as possible. The idea
here is to consider the function f(x) = x(6 - x)2 and hope to find a local maximum. We can write

fix) = 36x-12x2 +x3, and so f(x) = 36-24x+3x2 = 3(x2 -8x+12) = 3(x-2)(x-6). Hence x = 2

and x = 6 are stationary points. Next, note that f(x) = 6x - 24. Hence f(2) = -12 and f(6) = 12.

It follows that the function f(x) has a local maximum at the point x = 2. Then y = 6 - x = 4, with

f(2) = 32. This choice of x and y makes xy2as large as possible, with value f(2) = 32.

Example 2: We have 20 metres of fencing material, and wish to find the largest rectangular area

that we can enclose. Suppose that the rectangular area has sides x and y in metres. Then the area is
equal to xy, while the perimeter is equal to 2x+2y. Hence we wish to maximize the quantity xy subject
to the restriction 2x+2y = 20. Under the restriction 2x+2y = 20, the quantity xy = x(10-x). We can
therefore try to find a real number x which makes the quantity x(10 - x) as large as possible. Consider
the function f(x) = x(10 - x) = 10x - x2. Then f(x) = 10 - 2x, and so x = 5 is a stationary point.

Since f(x) = -2, the point x = 5 is a local maximum. Then y = 10 - x = 5, with f(5) = 25. This

choice of x and y makes xy as large as possible, with area 25 square metres.

Example 3: A manufacturer wishes to maximize the volume of cylindrical metal cans made out
of a fixed quantity of metal. To understand this problem, suppose that a typical can has radius r and
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height h as shown in the picture below:

h

\_\____________//

Then the total surface area is equal to 2mr2 + 2mrrh = S, where S is fixed, so that
S
27T

On the other hand, the volume of such a can is equal to V = mr2h. Under the restriction (1), we ha

. St -
V = mrih = —— — o,

h =

—T.

Consider now the function

Differentiating, we have

so that r=,/S/6m is the only stationary point, since negative values of r are meaningless.

Furthermore,we have V’(r) = =61, and so this stationary point is a local maximum. For this value of r,
we have

T [3s [ [es T_S_ 5 _,
i'._ﬁ—?—\j:— Ifh——v \.‘a V V = V'ﬁn 2r.

This means that the most economical shape of a cylindrical can is when the height is twice the radius.
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ACTIVITES FOR CHAPTER IX

ACTIVITY IX.1: For each of the following functions, find all of the stationary points. For each such
stationary point, determine whether it is a local maximum, a local minimum or another type of stationary
point:

a) f(z)=3c%+62+9 b) f(z) = bz — 2 ¢) f(zr)=2- 3z - 32

d) f(z)=6+9- 3" -1° e) f(.a']::r—i f) flz) =4z - l—g—h
T+ 1 r-1
9

o) flr)=(z+ 1) -(z-1 h) flz)=6-=—21’

ACTIVITY IX.2: A bullet is shot upwards at time t = 0 from the top of a building 176 metres talll,
with an initial speed of 160 metres per second. The height of the bullet is given by h(t) = -16£
+160t+176 after t seconds. At what time is the bullet at maximum height above the ground? What is this
height?

ACTIVITY IX.3: A rectangular beam, of width w and depth d, is cut from a circular log of diameter
a = 25 centimetres. The beam has strength S given by S = 2wd2. Find the dimension that will give the
strongest beam.
[Hint: Use d2 + w2 = a2 to relate the variables d and w.]



CHAPTER X: INTRODUCTION TO INTEGRATION

X.1. ANTIDERIVATIVES

In this chapter, we discuss the inverse process of differentiation. In other words, given a function f(x),
we wish to find a function F(x) such that F(x) = f(x). Any such function F(x) is called an antiderivative,
or indefinite integral, of the function f(x), and we write : F(x) = [ f(x)dx

A first observation is that the antiderivative, if it exists, is not unique. Suppose that the function

F(x) is an antiderivative of the function f(x), so that F(x) = f(x). Let G(x) = F(x) + C, where C

is any fixed real number. Then it is easy to see that G'(x) = F'(x) = f(x), so that G(x) is also an
antiderivative of f(x). A second observation, somewhat less obvious, is that for any given function f(x),
any two distinct antiderivatives of f(x) must differ only by a constant. In other words, if F(x) and G(x)
are both antiderivatives of f(x), then F(x) = G(x) is a constant. In this chapter, we shall denote any
such constant by C, with or without subscripts.An immediate consequence of this second observation is
the following simple result related to the derivatives of constants already previously seen.

ANTIDERIVATIVES OF ZERO:

We have [ 0 dx=C

In other words, the antiderivatives of the zero function are precisely all the constant functions.
Indeed, many antiderivatives can be obtained simply by referring to various rules concerning
derivatives. We list here a number of such results. The first of these is related to the already seen
constant multiple rule for differentiation.

CONSTANT MULTIPLE RULE.

Suppose that a function f(x) has antiderivatives. Then for any fixed real number ¢, we have
[cf (x) dx=c [ f(x) dx

ANTIDERIVATIVES OF POWERS.
a)Suppose that n is a fixed real number such that n #-1. Then

[xmdx=——x"*14 ¢

n+1

b) We have:

[x~dx=log || + C.

Proof. Part (a) is a consequence of the rule concerning derivatives of powers already seen. If x> 0,

then part (b) is a consequence of the rule concerning the derivative of the logarithmic function. If x <0,
we can write |x| = u, where u = =x. It then follows from the Chain rule that

a _ duax __1_1
log(x]) = —x——log(u) = —— =~
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SUM RULE:

Suppose that functions f(x) and g(x) have antiderivatives. Then

f (FGO) + g(O))dx = f F()dx + j 900 dx
ANTIDERIVATIVES OF TRIGONOMETRIC FUNCTIONS:

(a) We have
[cos rdr=sinz+C and [sin:r dr=—cosz+C.

(b) We have
/sccz rdr=tanz +C and [cscj rdr = —cotz+ C.

(c) We have

[tﬂu.‘rsoc rdr =secr+C and [cot;r cscxdr = —csez + C.

(d) We have

[sec;r dr =log|tanz + secz|+C  and [csc:r dr = —log|cotx +cscx| + C.

Proof. Parts (a)-(c) follow immediately from the rules concerning derivatives of the already
seen trigonometric functions. Part (d) follows from also the already given examples.
Corresponding to the rule concerning the derivative of the exponential function, we have the following.

ANTIDERIVATIVES OF THE EXPONENTIAL FUNCTION:
We have
[e*dx = e*+c

Example 1: Using the sum rule, the constant multiple rule and the rule concerning antiderivatives
of powers, we have

1, 3.
[(fg—3r+l)cl.a‘: [:F%l.!‘-l—E/:FdI-I— /J‘G(IIZEIJ—?}TE—J‘-I-C.

Example 2: Using the sum rule and the rules concerning antiderivatives of powers and of trigonometric
functions, we have

/‘{.r‘11 +sinz)dr = [.r‘j dr + [ﬁin rdr = é.r'i —cosz + C.
Examplle 3: We have | |
/[Hil’l T+ secr) dr = /sirl.rd;r + [sec;rdx = —cost + log | tanx + secx| 4 C.
Iéxample 4 | .
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/[DT + 3cosx)dr = /L‘r dr + 3 [CDH rdr =e” + 3sinx + C.

/ 1l —sinT
—dur,
J 1+sinx
note first of all that

) : : 9 s . : . 2
l —sinz (l—sinz)(l —sinz) 1—2sinr+sin"r 1—2sinz+sin”x

1 +sinz  (1+sinz)(l —sinz) 1 —sin’ cos®

Iéxample 5: To find

o 9
—sec?r — 2tanxsecT + tan®x = 2sec’  — 2tanrsecT — 1.
It follows that

1 —sinrx .
/7(1.:':2 secrdr — 2 [ tanzsecrdr — [ dr = 2tanx — 2secx — x + C.

1 +sinx
X.2: INTEGRATION BY SUBSTITUTION

We now discuss how we can use the chain rule in differentiation to help solve problems in integration.
This technique is usually called integration by substitution. As we shall not prove any result here, our
discussion will be only heuristic. We emphasize that the technique does not always work. First of all, we
have little or no knowledge of the antiderivatives of many functions. Secondly, there is no simple routine
that we can describe to help us find a suitable substitution even in the cases where the technique
works. On the other hand, when the technique does work, there may well be more than one suitable
substitution!

* Version 1:/f we make a substitution x = g(u), then dx = g'(u) du, and

[.f{'vi‘":l dr = [f{g[-u,}}g’[ 1) dae.

Example 1: Consider the indefinite integral

1
/ — dr
J V1 —x=
If we make a substitution x = sin u, then dx = cos u du, and
| COS U /
— dr= — du= | du=u+C=sin"tz+C
./*.”—'J"E J V1—sin®u :
On the other hand, if we make a substitution x = cos v, then dx = -sin v dv, and

/ 1 | sin v l / | C 1 C
——dr=— | —/——=dv=— [ dv=—v+C=—cos o+,
] V1-22 J V1 —rcosv .

Example 2: Consider the indefinite integral
1 L
J 1+ x2 o

If we make a substitution x = tan u, then dx = sec? u du, and

91



1 sec? u _
[ = dr = ["—2 du = [du —u+C=tan ‘z+C.
1+ a2 1 + tan” u )

On the other hand, if we make a substitution x = cot v, then dx = -csc2 v dv, and

1 sc v
/ —dr = — /%dt?:— /dr:—f'-I-C-':—CDt_lzr—C.
J 141z J 1+cotv _

Example 3: Consider the indefinite integral

[Iv"r + 1dx.

If we make a substitution x = u2- 1, then dx = 2u du, and

/J‘vf.'r + 1ldr = [2['&2 — 1u?du=2 /Ufl du — 2 [ujdu:

2 . 2. 2 2
::u“’—gu‘;—FC:—[;r—l)”“z—g(;r—ljlj“z—@.

5 53
On the other hand, if we make a substitution x = v -1, then dx =dv, and

/.rw.,a.r— ldr / (v—1)v 12 qp = / 32 Qv — /e'l“jcl't.‘
) ) . .

E f } 57 3/
w-fﬂ——; ‘40 = (r—l—l}”-’3— (z+1)*?+C.

3
We can confirm that the indefinite integral is correct by checking that

1 /2 . f 2 q
—(ZE@E+1)%? - Z(z+1)*?+C) =T+ 1.
dr \ 5 3

L] b

* Version 2: Suppose that a function f(x) can be written in the form f(x) = g(h(x))h’(x). If we make
a substitution u = h(x), then du = h'(x) dx, and

[1@ar= [ g @z = [

In Version 1, the variable x is initially written as a function of the new variable u, whereas in Version 2,
the new variable u is written as a function of x. The difference, however, is minimal, as the substitution
x = g(u) in Version 1 has to be invertible to enable us to return from the new variable u to the original
variable x at the end of the process.

Example 4: Consider the indefinite integral

/.r[;r2 - 3}"1 dr.
Note first of all that the derivative of the function x2 + 3 is equal to 2x, so it is convenient to make the

substitution u = x2+ 3. Then du = 2x dx, and

| 1 1 |
i el 490 — 2 | 9pf 42 — — gt T _ n
I[I(J +3)* da zl[u.}( 3)*dr = 2[71 du = 0" +C m(,r 3)°+C.

92



Example 5: Consider the indefinite integral

[ J.
dz.
J zlogz

Note first of all that the derivative of the function log x is equal to 1/x, so it is convenient to make the
substitution u = log x. Then du = (1/x) dx, and

[ ! dr = / ! du = log |u| + C =log | logz| + C.

xlog x u

Example 6: Consider the indefinite integral

F 3
[ r2e” dr.

Note first of all that the derivative of the function x3 is equal to 3x2, so it is convenient to make the
substitution u = x3. Then du = 3x2 dx, and

o 1 5 1 1. |
726" 3 de = = | 322" 5 dr=- [e'du=—-e"+(= —u'ri + (.
. 3 3. 3 3

A somewhat more complicated alternative is to note that the derivative of the function e is equal to
3x2 e*3 so it is convenient to make the substitution v =e*3. Then dv = 3x2e*® dx, and

3 1 [ £ 1 [ 1 1 s
/rge“ dr = — / 3r2e® dr = = / dv=—v+C = - +C.
. 3. 3. 3 3

Example 7: Consider the indefinite integral
/ tan® r sec? x dr.
Note first of all that the derivative of the function tan x is equal to sec? x, so it is convenient to make

the substitution v = tan x. Then du = sec? x dx, and
. . 1 1
/\tﬂllj rsect rdr = /\'-H'g di = zec‘l + = 1 tan®x + C.

Occasionally, the possibility of substitution may not be immediately obvious, and a certain amount
of trial and error does occur. The fact that one substitution does not appear to work does not mean
that the method fails. It may very well be the case that we have used a bad substitution. Or perhaps
we may slightly modify the problem first. We illustrate this point by looking at the two following
examples.

Example 8: Consider the indefinite integral

[t%ﬂl rdz.

Here it does not appear that any substitution will work. However, if we write

"sinT
tanrdr = dz,
) | coszT

then we observe that the derivative of the function cos x is equal to -sin x, so it is convenient to make
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the substitution u = cos x. Then du = =sin x dx, and

COsT L

. l.' a l
[tarl rdr = — / T r = — / —du = —log|u| +C = —log|cosx| + C.

Example 9: The indefinite integral

I . 3
/Q—I—ﬁ.r 2r* + 1 d "

4+ r?
is rather daunting at first sight, but we have enough technique to study it. Note first of all that
04+ 6r+202 +a° =0+ 20 + 202 + 4z + 2% = 9+ 25 + 247 -I—.'r[;L-I—IQ}
—14+20+8+ 2% +z(d+ 1Y) =14 20 +2(4+ 2%) + z(d + %)
It follows that

9+ 6x + 22° + z° 1 . _
[ 4+ x? dr= .[—'L—F;rz dr_.[-—l—l—.u."2 -:i.r—|—f[2—£}d;r. 2)

To study the first integral on the right hand side of (2), we can make a substitution x = 2 tan u. Then
dx =2 sec? u du, and

1 2sec’ u 1 1 1 1 (T
——dr= | ———du== [ du=-u+Cy = =-tan™ (—) +C7 )
.[4+T2 _[-—14—-—11:3,113 i 2,[ 2 ) 2 1

To study the second integral on the right hand side of (2), we note that the derivative of the function
4 + x2is equal to 2x. If we make a substitution v = 4+x2, then dv = 2x dx, and

2T 1
/ 1 5 dr = [—(h? =log |v| + Cy = log(4 + z2) + Cs. (4)
" T "E‘ . -EI

The third integral on the right hand side of (2) is easy to evaluate. We have
1
/[2+J~}dx:2f+3f2+€3. (5)

Substituting (3)—(5) into (2) and writing C = C1 + C + Cs, we obtain
9+ 6z + 2% + z* 1 e 1
dr = — tan™ (—) +log(4 + 22) + 20+ —x? + C.
/ 4+ z2 2 2 &l ) 2
It may be worth checking that

E(Etml (E)—lmg(-—l—k.r]—ﬁ.r—kﬁ.r —|—C-*)— 1.2 .

rail

X.3: DEFINITE INTEGRALS

Suppose that f(x) is a real valued function, defined on an interval [A,B] = {x €R: A <x <B}.

We shall suppose also that f(x) has an antiderivative F(x) for every x &€[A,B].Consider that f(x) >0 for
every x €[A,B].

By the definite integral

=
/ Flx)y da,
A
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we mean the area below the curve y = f(x) and above the horizontal axis y = 0, bounded between the
vertical lines x = A and x = B, as shown in the picture below.
Y
y = flz)

A B *

In general, we take the area between the curve y = f(x) and the horizontal axis y = 0, bounded
between the vertical lines x = A and x = B, with the convention that the area below the horizontal axis
y = 0 is taken to be negative, as shown in the picture below.

Y

y = flz)

negative

Example 1: If we examine the graph of the trigonometric functions sinus x(a) and cosinus x(b) below:

)

1
/\ /—\Ej — sin as

-2 —IT T

RN ANl
L NS

then it is easy to see that
2T w
/ sinrdr =0 and / cosxdr = 0.
Jo Jo
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In each case, it is easy to see that the area in question above the horizontal axis y = 0 is equal to the
area in question below this axis.

Example 2:lt is easy to see that the area between the line y = x and the horizontal axis y = 0,
bounded between the vertical lines x = 0 and x = 1, is the area of a triangle with base 1 and height 1.

Hence
r]_ l
rdr = >
o [ =~

In many instances, we do not have such geometric information to help us calculate the area in
question. Instead, we can use the indefinite integral.

X.3.1:FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS.
Suppose that a function F(x) satisfies F'(x) = f(x) for every x €[A,B]. Then

B
flx)dz = [F[.z'}] — F(B) — F(A).
A

=

A simple consequence of the above is that the constant multiple rule and sum rule for
indefinite integrals extend to definite integrals. For any fixed real number ¢, we have

5] B
[ ef(r)dr =¢ / flx)dx.
B

B B
/ (f(x)+ g(x))dz = flz)dz + / g(z)dr.
JA JA JA

A further consequence of the Fundamental theorem of integral calculus is a rule concerning splitting up

an interval [A,B] into two. Suppose that A < Ax< B. Then
B

We also have

B

A*
flr)dr = [ flx)dr + / f(x) dx.
JA JA J A

Example 3: Returning to Example 1, we have
0T 2w
/ sinr dr = [—cm-;;r] = —cos2m+cos0=0
Jo 0
Example 4: Returning to Example 2, we have

rl 1
1 1 1
/ rdr = [—.r} =——0=-.
S0 2 0 2 2
Example 5: We have
[ sinr dr = [—ms;r} = —cosT+cosl = 2.
0 0
Example 6: We have
2 4 2
/ —dxr = [lug .rq =log2 — log 1 = log 2.
J1 T 1
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Example 7: We have
_J.-L _J.’J
- _|_ -

1
(z° + %) dz =
./:1; r”) dx ] 2

Example 8:. Recall Example1: Since

1_1+1 11y 2
. \4 3 4 3) 3

' 1
/ X (1.’1‘" = Hill_l T+ {_' (6)
J V11— a2
we have

—sin l0=

| =

»1/2 174
' 1 . —1 . -1 ™
———dr = |sin = = sin r3
(

To obtain (6), recall that we can use the substitution x = sin u to show that

/;(lr: /clu:-n—l“.?.
J V1 —x? ,

followed by an inverse substitution u = sin-' x. Here, we need to make the extra step of substituting the

values x = 0 and x = 1/2 to the indefinite integral sin-1 x. Observe, however, that with the substitution

X = sin u, the variable x increases from 0 to 1/2 as the variable u increases from 0 to 17/6. But then

/6 w6 1,2 1
/ du = [n] — = = / —dx.
J0 0 b Jo V1 — a2

{

so it appears that we do not need the inverse substitution u = sin-! x. Perhaps we can directly substitute

u=0and u = /6 to the indefinite integral u.
X.3.2: DEFINITE INTEGRAL BY SUBSTITUTION - VERSION 1.

Suppose that a substitution x = g(u) satisfies the following conditions:
(a) There exist a, B €R such that g(a) = A and g(B) = B.
(b) The derivative g'(u) > 0 for every u satisfying a < u < 8. Then dx = g'(u) du, and

B 3
/ f[.r}(l.r:/ f(g(u))g'(u) du.

J A
If condition (b) above is replaced by the condition that the derivative g_(u) < 0 for every u
satisfying 8 < u < a, then the same conclusion holds if we adopt the convention that

3 fat
[ f(g(u))g' (u) du = — [ Fflg(u))g'(u) du.
J o J3

Example 9: To calculate the definite integral

/'1 l 1
— 4r,
Jo l+.i!'2

we can use the substitution x = tan u, so that dx = sec? u du. Note that tan 0 = 0 and tan(r/4) = 1,
and that sec2u > 0 whenever 0 < u < /4. It follows that

1 w /4 2 wf4 w /4
1 - sec” u / : T T
/ —dr = [ ————du = / du = {u] = ——0=—.
Jo 1+ x= Jo 1 + tan® u Jo 0 4 1
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Example 10: To calculate the definite integral

4
1

/ d,

Jo xlogx

we can use the substitution u = h(x) = log x, so that du = h'(x) dx, where h'(x) = 1/x > 0 whenever
2 < x < 4. Note also that h(2) =log 2 and h(4) = log 4. It follows that

4 Jog 4 log 4 .
/ : -dr = / l‘(le.z = [log |u] = loglog4 — loglog 2 = log (]Dﬂ) =log 2.
2 .

X.4: AREAS

We conclude this chapter by describing how we may use definite integrals to evaluate areas. Suppose
that the boundary of a region on the xy-plane can be described by a top edge y = g(x) and a bottom
edge y = f(x) bounded between two vertical lines x = A and x = B, as shown in the picture below.

Y

y = g(z)

Then the area of the region is given by the definite integral

B
/ (g(z) — f(z))dz.
Ja

Example 1: We wish to show that the area of the ellipse
72 2
- Y
PR A
where a, b €R are positive, is equal to mab. To do this, we may consider the quarter of the ellipse in
the first quadrant, as shown in the picture below.
Y
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It follows that the shaded region has area

0 ) a 1_,-"2
[ b (l — f—j) da.
Jo a-

We can use the substitution x = g(u) = a sin u. Then g(0) = 0 and g(17/2) = a. Furthermore, we have
dx = g'(u) du, where g(u) = a cosu > 0 whenever 0 < u < 17/2. It follows that

—

a g 1)2 /2 /2
[ b (l — —j) dr = / ab(l —sin”u) '~ cosudu = ab [ cos” udu
J0 a= Jo J0

w2 /2
/ 1 1 1 1 / mab
= ab [ —+ —cos2u | du =ab | —u+ —sin2u -

Example 2: We wish to evaluate the area of the triangle with vertices (0, 1), (1, 0) and (3, 2). To

do this, we split the triangle into two regions as shown in the picture below.
Y

S}

1 2 3 x
The triangle on the left is bounded between the vertical lines x = 0 and x = 1, and the top edge and
the bottom edge are given respectively by

1
Y = E..E‘-F 1 and y=1—uz.

The triangle on the right is bounded between the vertical lines x = 1 and x = 3, and the top edge and
the bottom edge are given respectively by

1
yzEJ‘—i—l and y=1x—1.

It follows that the area of the original triangle is given by

1 1 3 1
[ ((—J‘-I— l) — (1 —.r]) dr + [ ((—I-I— l) — (z — l}) dr
Jo 3 Ji 3
1, 3 5 5 11 3
:[ f;rd.r-l—/ (2—31') dr = [:.rj] + [E.r—i.aj] = 2.
Jo 3 J1 3 3 g 314

Example 3: We wish to evaluate the area of the quadrilateral with vertices (1, 1), (2, 0), (4, 1)
and (3, 5). To do this, we split the quadrilateral into three regions as shown in the picture below.
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/
1 2 3 4 -1
The triangle on the left is bounded between the vertical lines x = 1 and x = 2, and the top edge and the
bottom edge are given respectively by
y=2r — 1 and y=2—r.
The quadrilateral in the middle is bounded between the vertical lines x = 2 and x = 3, and the top edge
and the bottom edge are given respectively by

y=2r—1 and y=gzr—1L

The triangle on the right is bounded between the vertical lines x = 3 and x = 4, and the top edge and
the bottom edge are given respectively by

1
y= 17— 4x and Y= 5T = 1.

i

It follows that the area of the original quadrilateral is given by

2 a 1 4 ]
/ (20 —1)— (2 —z))dx + [ ((Zh‘— 1) - (—;r— l)) dr + [ ([l?—4.r)— (—;r - l)) dr
J1 Ja 2 Ja 2

2 3 4
:I/l' [3'J"—3](l.r'-|—/2 g.r'di‘-i-f; (lﬁ—g;r) dr

2 3 4 -

3 . 3 . 9 . 1:

= lﬁ.rz - 3.@} + [_—1‘21 + [18.2' - —.2‘2} = TJ
2 i 4 |, 4 |, 2

Alternatively, we can transpose the picture above and split the quadrilateral into two regions as shown

in the picture below:
I

[
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Note that the roles of x and y are now interchanged. The triangle on the left is bounded between the
vertical lines y =0 and y = 1, and the top edge and the bottom edge are given respectively by
r=2y+2 and r=2—1y
The triangle on the right is bounded between the vertical lines y = 1 and y = 5, and the top edge and
the bottom edge are given respectively by
I YA and b
I_T_Ey ATl J—Eg—i-
It follows that the area of the original quadrilateral is given by

1 I — .
17 1 11
Dap L — (= 4 4 _ .y _

fo ((2y+2) - (2—y))dy [1 (( 1 4,{;) (2,{;+ 2)) dy

1 5 g = 1 - 5 -

15 3 3 15 3 5 15

— [ 3ydy+ 22 dw= |2 P22 =22

4 ydy [1 (4 Jﬁ)wf [2?;]{]+ Ly BHL 5

as before.

B | —
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ACTIVITIES FOR CHAPTER X

ACTIVITY X.1: Find each of the following indefinite integrals.

a) [V3dx ; b)[(Gx+3)dx ; ) [(2x? —3x + 1)dx;d)
d) [x3dx ; e)[(x—2)(x+3)dx;f)[(1—2cosx)dx

ACTIVITY X.2: Evaluate each of the following indefinite integrals using the given substitution.

dx
a)f\/_dx ;b) [ sin 4x dx c)fm ;d)f(x2+6x)2) dx
Note: In a) use the substitution u=x3+2; in b) use the substitution u=4x; in ¢) use the substitution

u=2x + 1 and in d) use the substitution u=x2+ 6x.

ACTIVITY X.3: Evaluate each of the following indefinite integrals.

a)[ cos 2xdx; b) [Vx —1dx ;c) [ x*cos(1—x3)dx; d) [ xsinx’dx

&) (1_13x)4 dx ; f) [ J)% dx

ACTIVITY X.4: Evaluate each of the following definite integrals.

2 -3
a) / 2rdz b) / id.r' c) [
J1 J1 T 0
3 o &
d) / (3r + 1) dzx e) / sinz dz [ (xr —3)*dx
J2 J0 3
2 1
g ——dr h / re’ dr [ (r? 4+ a®)dzx
) Jo 4+ 12 ' ) Jo 0 j }
ACTIVITY X.5:

* Draw the graphs of the line y = x and the parabola y = x2.

* Find the two points of intersection of the two curves.

* Use definite integrals to find the area bounded between the two curves.
ACTIVITY X.6: Find the area of the triangle with vertices (0, 0), (4, 3) and (1, 5).
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