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               The module comprises in chapter I the basic algebra review aiming to assess students skills 
from their prior knowledge and at the same time providing them with the content they need to remediate 
those skills. 
Thus we will be able to tackle smoothly the chapters of Part I: 
Linear Equations and Graphs; Functions-Graphs; Systems of Linear Equations-Matrices. 
Determinants. 
 
The Part II is allocated to the Calculus and includes the following chapters: 
Limits and the Derivative; Additional Derivative Topics; Graphing and Optimization and 
Integration 
 
The discussion and exploration of problems lead into new concepts and help students gain better 
insight into the mathematical concepts through thought-provoking questions that are effective in 
classroom. Thus Teacher will be able to easily craft homework assignments that best meet the needs 
of students by taking advantage of the variety of types and difficulty levels of the exercises set at the end 
of each Chapter. 
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PART I: LINEAR ALGEBRA. 
 
The rules for manipulating and reasoning with symbols in algebra depend, in large measure, on 
properties of the real numbers. In this section we look at some of the important properties of this 
number system. To make our discussions here and elsewhere in the module clearer and more precise, 
we occasionally make use of simple set concepts and notation. 
 
CHAPTER I: SOME PREREQUISITE TOPICS 
 
I.1: SET OF REAL NUMBERS. 

Informally, a real number is any number that has a decimal representation. Table 1 describes the set 

of real numbers and some of its important subsets. Figure 1 illustrates how these sets of numbers are 

related. The set of integers contains all the natural numbers and something else—their negatives and 0. 

The set of rational numbers contains all the integers and something else—non integer ratios of integers. 

And the set of real numbers contains all the rational numbers and something else—irrational numbers. 

TABLE 1:  REAL NUMBERS 

SYMBOL NAME DESCRIPTION EXAMPLES 

N 
NATURAL NUMBERS. COUNTING NUMBERS (ALSO 

CALLED POSITIVE INTEGERS)  
 1, 2, 3, …… 

Z 
INTEGERS NATURAL 
NUMBERS 

 THEIR NEGATIVES, AND 0  ..., -2, -1, 0, 1, 2, ….. 

Q RATIONAL NUMBERS 

 RATIONAL NUMBERS NUMBERS 
THAT CAN BE REPRESENTED AS 
A/B, WHERE A AND B ARE 
INTEGERS AND B≠ 𝟎 DECIMAL 

REPRESENTATIONS ARE 
REPEATING OR TERMINATING 

 

-4,0,1,25,
−𝟑

𝟓
 ,3.67,           -

0.333,5.272727 

I IRRATIONAL NUMBERS 

NUMBERS THAT CAN BE 
REPRESENTED AS NONREPEATING 
AND NONTERMINATING DECIMAL 
NUMBERS 

√𝟐,  𝝅,   

∛𝟕,1.414213,2.71828182 

R 
REAL NUMBERS  RATIONAL AND IRRATIONAL 

NUMBERS 
 

 

I.2: REAL NUMBER LINE 

 
                A one-to-one correspondence exists between the set of real numbers and the set of points 

on a line. That is, each real number corresponds to exactly one point, and each point corresponds to 

exactly one real number. A line with a real number associated with each point, and vice versa, as shown 

in figure 1, is called a real number line, or simply a real line. Each number associated with a point is 

called the coordinate of the point:                  

                                

                                                    
 

 

I.3.BASIC REAL NUMBER PROPERTIES 
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                 In mathematics, we often have to perform some or all of the four major operations of arithmetic 
on real numbers. These are addition (+), subtraction (−), multiplication (×) and division (÷). There are 
simple rules and conventions which we need to observe: 
(a) Operations within brackets are performed first. 

(b) If there are no brackets to indicate priority, then multiplication and division take precedence 
over addition and subtraction. 

(c) Addition and subtraction are performed in their order of appearance. 

(d) Multiplication and division are performed in their order of appearance. 

(e) A number of additions can be performed in any order. For any real numbers a, b, c ∈ R, we 
have : 

                                        a + (b + c) = (a + b) + c and a + b = b + a. 

Example 1.3.1. We have −3 × 4 − 5 + (−3) = −(3 × 4) − 5 + (−3) = −12 − 5 −3 = −20. Note that we have 
recognized that 3 × 4 takes precedence over the − signs. 

Example 1.3.2. We have  

21 + 32 ÷ (−4) + (−6) = 21 + (32 ÷ (−4)) + (−6) = 21 + (−8) + (−6) 

= 21 − 8 − 6 = (21 − 8) − 6 = 13 − 6 = 7. 

Note that we have recognized that 32 ÷ (−4) takes precedence over the + signs, and that 21 − 8 takes 
precedence over the following − sign. Note that we have recognized that 32 ÷ (−4) takes precedence 
over the + signs, and that 21 − 8 takes precedence over the following − sign. 

Example 1.3.3. We have (366÷(−6)−(−6))÷(−11) = ((−61)−(−6))÷(−11) = (−55)÷(−11) = 5.Note that the 

division by −11 is performed last because of brackets. 

Example 1.3.4. We have 720 ÷ (−9) ÷ 4 × (−2) = (−80) ÷ 4 × (−2) = (−20) × (−2) = 40. 

Example 1.3.5. Convince yourself that (76 ÷ 2 − (−2) × 9 + 4 × 8) ÷ 4 ÷ 2 − (10 − 3 × 3) − 6 = 4. Another 

operation on real numbers that we perform frequently is taking square roots: 

Suppose that a ≥ 0. We say that x is a square root of a if x2 = a. 

Remarks. (1) If a > 0, then there are two square roots of a. We denote by 

√a the positive square root of a, and by −√a the negative square root of a. 

(2) If a = 0, then there is only one square root of a. We have 

√0 = 0. 

(3) Note that square root of a is not defined when a < 0. If x is a real number, then x2 ≥ 0 and 

so cannot be equal to any real negative number a. 

Example 1.3.6. We have  
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Example 1.2.7. We have 3. To see this, note that 

. 

Example 1.3.7. We have  

1.4. DISTRIBUTIVE LAWS. 

We now consider the distribution of multiplication inside brackets. For convenience, we usually suppress 

the multiplication sign ×, and write ab to denote the product a × b. For every a,b,c,d ∈R, we have 

(a) a(b + c) = ab + ac; 

(b) (a + b)c = ac + bc; and 

(c) (a + b)(c + d) = ac + ad + bc + bd. 

Special cases of part (c) above include the following two laws. 

*LAWS ON SQUARES: 

For every a,b ∈R, we have 

(a) (a + b)2 = a2 + 2ab+b2; 

; and 

 

Example 1.4.1. Consider the expression (2x+5)2−(x+5)2. Using part (a) on the Laws on squares, we have 

(2x + 5)2 = 4x2 + 20x + 25 and (x + 5)2 = x2 + 10x + 25. It follows that 

(2x + 5)2− (x + 5)2 = (4x2 + 20x + 25) − (x2 + 10x + 25) = 4x2 + 20x + 25 

− x2− 10x − 25 = 3x2 + 10x. 

Example 1.4.2. Consider the expression (x − y)(x + y − 2) + 2x. Using an extended version of part (c) of 

the Distributive laws, we have 

  (x − y)(x + y − 2) = x2 + xy − 2x − xy − y2 + 2y = x2− 2x − y2 + 2y. 

It follows that 

(x − y)(x + y − 2) + 2x = (x2− 2x − y2 + 2y) + 2x = x2− 2x − y2 + 2y + 2x = x2− y2 + 2y. 

 

 

*LAWS ON CUBES 
(a) a3 − b3 = (a − b)(a2 + ab + b2); and 
(b) a3 + b3 = (a + b)(a2 − ab + b2). 
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Alternatively, we have 

 

Example 1.4.3. We have 

. 

Example 1.4.4 : 

We have (5x + 3)2− (2x − 3)2 + (3x − 2)(3x + 2)= (25x2 + 30x + 9) − (4x2− 12x + 9) + (9x2− 4) 

= 25x2 + 30x + 9 − 4x2 + 12x − 9 + 9x2− 4 = 30x2 + 42x − 4. 

1.5. ARITHMETIC OF FRACTIONS 

Suppose that we wish to add or substract two fractions: 
𝑎

𝑏
+

𝑐

𝑑
   or      

𝑎

𝑏
−

𝑐

𝑑
  where a,b,c,d ∈Z  with 𝑏 ≠ 0 𝑎𝑛𝑑 𝑑 ≠ 0. For convenience, we have relaxed the 

requirement that b and d are positive integers. 

We have: 

  and . 

In both cases, we first rewrite the fractions with a common denominator, and then perform addition or 

subtraction on the numerators. Where possible, we may also perform some cancellation to the answer. 

Example 1.5.1. Following the rules precisely, we have 

. 

However, we can somewhat simplify the argument by using the lowest common denominator instead of the 

product of the denominators, and obtain 

. 

The next few examples may involve ideas discussed in the previous sections. The reader is advised 

to try to identify the use of the various laws discussed earlier. 

Example 1.5.2 Consider the expression 

. 

 

Here the denominators are the same, so we need only perform subtraction on the numerators. We have 
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Example 1.5.3.We have 

 

 

Example 1.5.4. We have 

. 

Example 1.5.5. We have 

. 

Note here that the two denominators are essentially the same, apart from a sign change. Changing the sign 

of both the numerator and denominator of one of the fractions has the effect of giving two fractions with the 

same denominator. 

Example 1.5.6. We have 

. 

Note here that the common denominator is not the product of the two denominators, since we have 

observed the common factor a in the two denominators. If we do not make this observation, then we have 

 
Note that the common factor a is cancelled from the numerator and denominator in the last step. We still 

have the same answer, but a little extra work is required. 

 

Suppose next that we wish to multiply two fractions and consider: 

, 

where a,b,c,d ∈Z with b≠ 0 𝑎𝑛𝑑 𝑑 ≠ 0 

. 

We simply multiply the numerators and denominators separately. Where possible, we may  

alsoperform some cancellation to the answer. 
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Example 1.5.7. We have 

. 

Example 1.5.8. We have 

. 

Example 1.5.9. We have 

. 

Example 1.5.10. We have 

. 

Example 1.5.11. We have 

. 

Example 1.5.12. We have 

. 

Suppose finally that we wish to divide one fraction by another and consider: 

 

where a,b,c,d ∈Z with b≠ 0 𝑎𝑛𝑑 𝑑 ≠ 0.In other words, we invert the divisor and then perform 

multiplication instead. Where possible, we may also perform some cancellation to the answer. Note the 

special cases that 

     and   . 

Example 1.5.13. We have 

 

Example 1.5.14. We have 
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Example 1.5.15. We have 

. 

Example 1.5.16. We have 

 

 

1.1.5: FACTORIZATION 

Very often, we have to handle mathematical expressions that can be simplified. We have seen a few 

instances of cancellation of common terms in the numerator and denominator of fractions. We now 

consider the question of factorization. This can be thought of as the reverse process of expansion. It is 

difficult, if not impossible, to write down rules for factorization. Instead, we shall look at a few examples, 

and illustrate some of the ideas. 

Example 1.1.5.1. Consider the expression x3 − x. First of all, we recognize that both terms x3 and x have a 
factor x. Hence we can write x3 − x = x(x2 − 1), using one of the Distributive laws. Next, we realize that we 
can apply one of the Laws on squares on the factor x2− 1. Hence 

x3− x = x(x2− 1) = x(x − 1)(x + 1). 

Example 1.1.5.2. Consider the expression a4− b4. Note that we can apply one of the Laws on squares to 
obtain a4 − b4 = (a2 − b2)(a2 + b2). We can again apply one of the Laws on squares on the factor a2− b2. 
Hence a4− b4 = (a2− b2)(a2 + b2) = (a − b)(a + b)(a2 + b2). 

Example 1.1.5.3. Consider the expression x3 − 64. Note that 64 = 43. Applying one of the Laws on cubes, 
we obtain x3− 64 = (x − 4)(x2 + 4x + 16). 

Example 1.1.5.4. Consider the expression m2− n2 + 4m + 4n. We may write 

m2− n2 + 4m + 4n = m2 + 4m + 4n − n2 = m(m + 4) + n(4 − n), 

and this does not lead anywhere. However, we may recognize that 

m2− n2 + 4m + 4n = (m − n)(m + n) + 4(m + n) = (m − n + 4)(m + n), 
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and this gives a good factorization. 

Example 1.1.5.5. We have 

. 

Example 1.1.5.6. We have 

 

Example 1.5.7. We have 
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ACTIVITIES OF CHAPTER I 

ACTVITIES I.1-Find the precise value of each of the following expressions: 

           

 

ACTVITIES I.2-Expand each of the following expressions:  

 
ACTVITIES I.3:Rewrite each of the following expressions, showing all the steps of your argument 

carefully: 

 a)  b)  c)  

 d)  e)  f)  

ACTVITIES I.4: Rewrite each of the following expressions, showing all the steps of your argument 

carefully: 

 a)  b)  

 c)  d)  

 e)  f)  

ACTVITIES I.5-Factorize each of the following expressions, using the laws on squares and cubes as 

necessary: 

 a) x4− x2 b) x6− y6 c) x3y − xy3 d) x5y2 + x2y5 

ACTVITIES I.6-Simplify each of the following expressions, showing all the steps of your argument 

carefully: 

 a)  b)  

 c)  d)  

                                                       e) x3− y3 + x2y – x 
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CHAPTER II: LINEAR EQUATIONS AND GRAPHS 

II.1: INTRODUCTION 
 
               In this Chapter we will discuss some algebraic methods for solving equations and inequalities. 

Then we will introduce coordinate systems that allow us to explore the relationship between algebra and 

geometry. Finally, we will use this algebraic–geometric relationship to find equations that can be used to 

describe real-world data sets. Thus we will learn how to find the equation of a line that fits data and 

consider many applied problems that can be solved using the concepts discussed in this chapter. 

 

II.2: LINEAR EQUATIONS AND INEQUALITIES 

 

                  The equation:  

  and the  inequality:                                   q 

                                                                     

are both first degree in one variable. In general, a first-degree, or linear equation in 

one variable is any equation that can be written in this standard form:ax+b=0, a≠0   (1) 

 

                 If the equality symbol, =, in (1) is replaced by  <  ;    >  ;   ≤  ;  ≥ the resulting expression is 

called a first-degree, or linear inequality. A solution of an equation (or inequality) involving a single 

variable is a number that when substituted for the variable makes the equation (or inequality) true. 

The set of all solutions is called the solution set. When we say that we solve an equation (or 

inequality), we mean that we find its solution set. Knowing what is meant by the solution set is one thing; 

finding it is another. We start by recalling the idea of equivalent equations and equivalent inequalities.  

 

               If we perform an operation on an equation (or inequality) that produces another equation (or 
inequality) with the same solution set, then the two equations (or inequalities) are said to be equivalent. 
The basic idea in solving equations or inequalities is to perform operations that produce simpler 
equivalent equations or inequalities and to continue the process until we obtain an equation or inequality 
with an obvious solution. 
 

II.2.1: LINEAR EQUATIONS 

            Linear equations are generally solved using the following equality properties:               

  An equivalent equation will result if: 
1. The same quantity is added to or subtracted from each side of a given equation. 
2. Each side of a given equation is multiplied by or divided by the same nonzero 
quantity. 

Example 1: Solve and check: 8x – 3(x – 4) = 3(x – 4) + 6 

Solution :8x – 3(x – 4) = 3(x – 4) + 6   Use the distributive property. 
                 8x - 3x + 12 = 3x - 12 + 6    Combine like terms. 
                 5x + 12 = 3x – 6                  Subtract 3x from both sides. 
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                 2x + 12 = -6                         Subtract 12 from both sides. 
                         2x = -18                       Divide both sides by 2. 
                              x = -9 
CHECK: 

                                              
 
 
 
Example 2 
EXAMPLE 2: 
 

                                                   

Solution: 
 
                     What operations can we perform on 

                         

                                                                                    
to eliminate the denominators? If we can find a number that is exactly divisible by 

each denominator, we can use the multiplication property of equality to clear the denominators.The LCD 

(least common denominator) of the fractions, 6, is exactly what we are looking for! Actually, any common 

denominator will do, but the LCD results in a simpler equivalent equation. So, we multiply both sides of 

the equation by 6: 

                                                            

                                                                   
CHECK: 

                                                       
Matched Problem 1: 
                                        Solve and check: 
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                     In many applications of algebra, formulas or equations must be changed to alternative equivalent forms. The following 

example is typical. 

 

EXAMPLE 3:  Solving a Formula for a Particular Variable 3 S  

S If you deposit a principal 

P in an account that earns simple interest at an annual rate r, then the amount 

                  If you deposit a principal P in an account that earns simple interest at an annual rate r, then  
A in the account after t years is given by: A = P + Prt. 
 
                Solve for 
(a) r in terms of A, P, and t 

(b) P in terms of A, r, and tKK11 
 

SOLUTION (a): 
 

                                                         
                      (b): 

                                                          
 
Matched Problem 2: 
 

If a cardboard box has length L, width W, and height H,then its surface area is given by the formula S = 
2LW + 2LH + 2WH. Solve the formula for (a) L in terms of S, W, and H (a) H in terms of S, L, and W.or a 

Particular 
 
II.2.2: LINEAR INEQUALITIES 

 
                  Before we start solving linear inequalities, let us recall what we mean by < (less 
than) and >(greater than). If a and b are real numbers, we write 

                                                   
if there exists a positive number p such that a + p = b. Certainly, we would expect 
that if a positive number was added to any real number, the sum would be larger than 

the original. That is essentially what the definition states. If a<b, we may also write 

                                                    
 
Example 4: 
 

   (a) 3 < 5     Since 3 + 2 = 5 
   (b) -6 < -2   Since -6 + 4 = -2 

   (c) 0 > -10  Since -10< 0 (because -10 + 10 = 0) 
                 The inequality symbols have a very clear geometric interpretation on the real 
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number line. If a <b, then a is to the left of b on the number line; if c >d, then c is 

to the right of d on the number line: 

                                       ble 

                  An equivalent inequality will result, and the sense or direction will remain the 

same if each side of the original inequality: 

1. has the same real number added to or subtracted from it. 

2. is multiplied or divided by the same positive number. 

                  An equivalent inequality will result, and the sense or direction will reverse if each 

side of the original inequality 

3. is multiplied or divided by the same negative number. 

Note: Multiplication by 0 and division by 0 are not permitted. 

 

               Therefore, we can perform essentially the same operations on inequalities that we perform on 

equations, with the exception that the sense of the inequality reverses if we multiply or divide both 

sides by a negative number. Otherwise, the sense of the inequality does not change. For example, if 

we start with the true statement -3 > -7 and multiply both sides by 2, we obtain -6 >-14 and the sense of 

the inequality stays the same. But if we multiply both sides of -3 >-7 by -2, the left side becomes 6 and 

the right side becomes 14, so we must write 6 < 14 to have a true statement. The sense of the inequality 

reverses. 

If a < b, the double inequality a<  x<  b means that a  <x and x< b; that 

is, x is between a and b. Interval notation is also used to describe sets defined by 

inequalities, as shown in Table 1: 

  

 Table 1: Interval Notation 
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                   The numbers a and b in table 1 are called the endpoints of the interval. An interval is 

closed if it contains all its endpoints and open if it does not contain any of its endpoints. The intervals [a, 

b],(−∞, a] and [b, ∞) are closed, and the intervals (a, b),(−∞, a] and (b, ∞) are open.  

                     Note that the symbol ∞ (read infinity) is not a number. When we write [b, ∞), we are simply 

referring to the interval that starts at b and continues indefinitely to the right. We never refer to  as ∞ an 

endpoint, and we never write [b, ∞].The interval (−∞, ∞) is the entire real number line. Note that an 

endpoint of a line graph in table 1 has a square bracket through it if the endpoint is included in the 

interval; a parenthesis through an endpoint indicates that it is not included. 

 

Example 5: 

(a) Write [ -2, 3) as a double inequality and graph. 

(b) Write x ≥-5 in interval notation and graph. 

SOLUTION- (a): 

                             
                    -(b):  

                             
Explore and Discuss: 
 

The solution to Example 5b shows the graph of the inequality x ≥ -5. What is the 
graph of x < -5? What is the corresponding interval? Describe the relationship between 
these sets. 

Example 6: 

 - Solve and graph: 

                                          

Solution: 

     

Matched Problem: 
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Note that a linear equation usually has exactly one solution, while a linear inequality usually has infinitely 

many solutions. 

Applications 

To realize the full potential of algebra, we must be able to translate real-world problems into mathematics. 

In short, we must be able to do word problems. Here are some suggestions that will help you get started: 

 

Procedure for Solving Word Problems 

1. Read the problem carefully and introduce a variable to represent an unknown quantity in the problem. 

Often the question asked in a problem will indicate the unknown quantity that should be represented by a 

variable. 

2. Identify other quantities in the problem (known or unknown), and whenever possible, express unknown 

quantities in terms of the variable you introduced in Step 1. 

3. Write a verbal statement using the conditions stated in the problem and then write an equivalent 

mathematical statement (equation or inequality). 

4. Solve the equation or inequality and answer the questions posed in the problem. 

5. Check the solution(s) in the original problem. 

 

Example 7 Purchase Price  

Alex purchases a plasma TV, pays 7% state sales tax, and is charged $65 for delivery. If Alex’s total cost 

is $1,668.93, what was the purchase price of the TV? 

Solution 

Step 1  

Introduce a variable for the unknown quantity. After reading the problem, 

we decide to let x represent the purchase price of the TV. 

Step 2  

Identify quantities in the problem. 

Delivery charge: $65 

Sales tax: 0.07x 

Total cost: $1,668.93 

Step 3  

Write a verbal statement and an equation. 

Price + Delivery Charge + Sales Tax = Total Cost 

x + 65 + 0.07x = 1,668.93 

Step 4  
Solve the equation and answer the question. 

x + 65 + 0.07x = 1,668.93 Combine like terms. 

1.07x + 65 = 1,668.93 Subtract 65 from both sides. 

1.07x = 1,603.93 Divide both sides by 1.07. 

x = 1,499 

The price of the TV is $1,499. 

 

Step 5  
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Check the answer in the original problem. 

Price =                          $ 1,499.0 0 

Delivery charge =         $      65.00 

Tax = 0.07 x 1,499 =    $    104.93 

Total =                         $ 1,668.93 

 

Matched Problem: 

                Mary paid 8.5% sales tax and a $190 title and license fee when she bought a new car for a total 

of $28,400. What is the purchase price of the car? 

 

              The next example involves the important concept of break-even analysis, which is encountered 

in several places in this text. Any manufacturing company has costs, and revenues, R. The company will 

have a loss if R <C, will break even if R = C, and will have a profit if R >C. Costs involve fixed costs, 

such as plant overhead, product design, setup, and promotion, and variable costs, which are dependent 

on the number of items produced at a certain cost per item. 

 

Example 8: Break-Even Analysis  
 
                  A multimedia company produces DVDs.One time fixed costs for a particular DVD are $ 

48,000, which include costs such as filming, editing, and promotion. Variable costs amount to $12.40 per 

DVD and include manufacturing, packaging, and distribution costs for each DVD actually sold to a 

retailer. 

The DVD is sold to retail outlets at $17.40 each. How many DVDs must be manufactured? 

and sold in order for the company to break even? 

 
Solution 
 
Step 1  

Let x = number of DVDs manufactured and sold. 

Step 2 

C = cost of producing x DVDs 

R = revenue (return) on sales of x DVDs 

Fixed costs = $ 48,000 

Variable costs = $12.40x 

C = Fixed costs + variable costs 

= $ 48,000 + $ 12.40x 

R = $ 17.40x 

Step 3  

The company breaks even if R = C; that is, if $17.40x = $48,000 + $12.40x 

Step 4  

17.4x = 48,000 + 12.4x Subtract 12.4x from both sides. 

5x = 48,000                    Divide both sides by 5. 

x = 9,600 
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The company must make and sell 9,600 DVDs to break even. 

Step 5 
 Check: 
                          Costs                                                    Revenue 

        48,000 + 12.4x (9,600= $ 167,040)              17.4x (9,600) = $ 167,04a 

d Lines 
   II.3: GRAPHS AND LINES   

 

                  In this section, we will consider one of the most basic geometric figures—a line. 

When we use the term line, we mean straight line. We will learn how to recognize and graph a line, and 

how to use information concerning a line to find its equation. Examining the graph of any equation often 

results in additional insight into the nature of the equation’s solutions. 

 
II.3.1: CARTESIAN COORDINATE SYSTEM 

                 Recall that to form a Cartesian or rectangular coordinate system, we select two real number 

lines—one horizontal and one vertical—and let them cross through their origins as indicated in figure 1. 

Up and to the right are the usual choices for the positive directions. These two number lines are called 

the horizontal axis and the vertical axis, or, together, the coordinate axes. The horizontal axis is 

usually referred to as the x axis and the vertical axis as the y axis, and each is labeled accordingly. The 

coordinate axes divide the plane into four parts called quadrants, which are numbered counterclockwise 

from I to IV (see fig. 1).    

 
                                                  FIGURE 1: THE CARTESIAN (RECTANGULAR) COORDINATE SYSTEM 
 

                     Now we want to assign coordinates to each point in the plane. Given an arbitrary point P in 

the plane, pass horizontal and vertical lines through the point (fig. 1). The vertical line will intersect the 

horizontal axis at a point with coordinate a, and the horizontal line will intersect the vertical axis at a point 

with coordinate b. These two numbers, written as the ordered pair (a, b) form the coordinates of the 

point P. The first coordinate, a, is called the abscissa of P; the second coordinate, b, is called the 

ordinate of P. The abscissa of Q in figure 1 is -5, and the ordinate of Q is 5. The coordinates of a point 

can also be referenced in terms of the axis labels. The x coordinate of R in figure 1 is 10, and the y 

coordinate of R is -10. The point with coordinates (0, 0)is called the origin. The procedure we have just 
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described assigns to each point P in the plane a unique pair of real numbers (a, b). Conversely, if we are 

given an ordered pair of real numbers (a, b), then, reversing this procedure, we can determine a unique 

point P in the plane. Thus, 

There is a one-to-one correspondence between the points in a plane and the elements in the set of 

all ordered pairs of real numbers. This is often referred to as the fundamental theorem of analytic 

geometry. 

 

II.3.2: GRAPHS OF Ax + By = C 

 

                         In previous section, we called an equation of the form ax + b = 0 (a≠0) a linear 
equation in one variable. Now we want to consider linear equations in two variables. A linear equation 
in two variables is an equation that can be written in the standard form: Ax + By = C where A, B, and C 
are  
variables. 
 
A solution of an equation in two variables is an ordered pair of real numbers that satisfies the equation. 

For example,(4, 3) is a solution of 3x - 2y = 6. The solution set of an equation in two variables is the set 

of all solutions of the equation. The graph of an equation is the graph of its solution set. 

Explore and Discuss: 

(a) As noted earlier, (4, 3) is a solution of the equation. 

                              

Find three more solutions of this equation. Plot these solutions in a Cartesian Coordinate system. What 
familiar geometric shape could be used to describe the solution set of this equation? 
(b) Repeat part (A) for the equation x = 2. 
(c) Repeat part (A) for the equation y = -3. 
In explore and discuss,you may have recognized that the graph of each equation is a (straight) line.  

 
The graph of any equation of the form Ax + By = C (A and B not both 0) (1) is a line, and any line in a 
Cartesian coordinate system is the graph of an equation of this form. 
 

If A  ≠0 and B ≠0, then equation (1) can be written as 

                    y = −
𝐴

𝐵
𝑥+ 

𝐶

𝐵
 = mx + b,  

If A = 0 and B ≠ 0, then equation (1) can be written as  

                 Y=
𝐶

𝐵
 and its graph is a horizontal line. If A ≠ 0 and B = 0, then equation (1) can be 

Written as  x=
𝐶

𝐴
 and its graph is a vertical line. To graph equation (1), or any of its special cases, plot 

any two points in the solution set and use a straightedge to draw the line through these two points. The 

points where the line crosses the axes are often the easiest to find. The y intercept* is the y coordinate of 

the point where the graph crosses the y axis, and the x intercept is the x coordinate of the point where the 

graph crosses the x axis. To find the y intercept, let x = 0 and solve for y. To find the x intercept, let y = 0 

and solve for x. It is a good idea to find a third point as a check point.. 
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Example 1: Using Intercepts to Graph a Line from that equation: 3x - 4y = 12 

 

 
 
The graph is:                                                                                          

                          
 
Matched Problem- Graph: 4x - 3y = 12 
 
Example 2: Horizontal and Vertical Lines 
 
(a) Graph x = -4 and y = 6 simultaneously in the same rectangular coordinate system. 

(b) Write the equations of the vertical and horizontal lines that pass through the point (7, -5). 

 

Solution 

(a) 

 

 
 

 (b) Horizontal line through (7, -5): y = -5; Vertical line through (7, -5): x = 7 
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Matched Problem: 

(a) Graph x = 5 and y = -3 simultaneously in the same rectangular coordinate 
system. 
(b) Write the equations of the vertical and horizontal lines that pass through the 
point ( -8, 2). 

II.3.2.1: SLOPE OF A LINE 

 
If we take two points, P1 (x1, y1) and P2(x2, y2), on a line, then the ratio of the change in y to the change in 
x as the point moves from point P1 to point P2 is called the slope of the line. In a sense, slope provides a 
measure of the “steepness” of a line relative to the x axis. The change in x is often called the run, and the 
change in y is the rise. 
 
DEFINITION-SLOPE OF A LINE. 
 

If a line passes through two distinct points, P1 (x1, y1) and P2(x2, y2) , then its slope is given by the 

formula 

                  

   
For a horizontal line, y does not change; its slope is 0. For a vertical line, x does not change; x1 = x2 so its 
slope is not defined. In general, the slope of a line may be positive, negative, 0, or not defined. Each case 
is illustrated geometrically in table 1 below: 
 

TABLE 1: GEOMETRIC INTERPRETATION OF SLOPE 

 
 
The slope of a line is the same for any pair of distinct points on the line as shown below:                                                                             
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ExamplExample3.e 
Example 3: Finding Slopes 

 

*Sketch a line through each pair of points, and find the slope of each line: 
(a) (-3, -2); (3, 4)        (b) (-1, 3); (2, -3)     (c) ( -2, -3); (3, -3)            (d) (-2, 4), (-2, -2) 
 
Solution: 
 

a)                                                                                    b) 

                                      
   c)                                                                                        d)                                                        

                                           

                                                    

                                                                              Slopes not defined 

Matched Problem: 
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*Find the slope of the line through each pair of points. 

(a) (-2, 4); (3, 4)     (b) ( -2, 4);(0, -4)          (c) (-1, 5);(-1, -2)        (d) (-1, -2); (2, 1) 
 
II.3.2.2: EQUATIONS OF LINES: SPECIAL FORMS 
 
            Let us start by investigating why y = mx + b is called the slope-intercept form for a line. 
Explore and Discuss:  
*(a) Graph y = x + b for b = -5, -3, 0, 3, and 5 simultaneously in the same coordinate 

system. Verbally describe the geometric significance of b.  

 *(b) Graph y = mx - 1 for m = -2, -1, 0, 1, and 2 simultaneously in the same coordinate system.  

Verbally describe the geometric significance of m. 

             As you may have deduced from Explore and Discuss, constants m and b in 
y = mx + b have the following geometric interpretations: 
 
If we let x = 0, then y = b. So the graph of y = mx + b crosses the y axis at (0, b). The constant b is the y 

intercept. For example, the y intercept of the graph of y = -4x - 1 is -1. To determine the geometric 

significance of m, we proceed as follows: If y = mx + b, then by setting x = 0 and x = 1, we conclude that   

(0, b) and (1, m + b ) lie on its graph (Figure 2). 

 

                                                 
                                             Figure 2: The slope-intercept form for a line. 

 The slope of this line is given by: 

                                          
                            So m is the slope of the line given by y = mx + b. 

Thus the equation y = mx + b ( m = slope, b = y intercept) is called the slope-intercept form of an 

equation of a line. 

 

Example 4: Using the Slope-Intercept Form 

(a) Find the slope and y intercept, and graph y = -2/3 x - 3. 
(b) Write the equation of the line with slope 2/3 and y intercept -2. 
 
Solution 
(a) Slope = m = -2/3 ; y intercept = b = -3 

(b) m = 2/3 and b = -2; so, y = 2/3x-2 

 

 

Matched Problem: Write the equation of the line with slope 1/2and y intercept-1. Graph. 
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                   Suppose that a line has slope m and passes through a fixed point (x1, y1). If the 

point (x, y) is any other point on the line (Fig. 3), 

                                        

then  
𝑦−𝑦1
𝑥−𝑥1

= 𝑚. That is, y - y1 = m(x - x1) -point-slope form of an equation of a line.  

We now observe that (x1, y1) also satisfies equation the previous equation and conclude that it is an 

equation of a line with slope m that passes through (x1, y1). The point-slope form is extremely useful, 

since it enables us to find an equation for a line if we know its slope and the coordinates of a point on the 

line or if we know the coordinates of two points on the line. 

    

   Example 5:  Using the Point-Slope Form 

(a) Find an equation for the line that has slope 1/2 and passes through (-4, 3). Write the final answer in 

the form Ax + By = C. 

(b) Find an equation for the line that passes through the points (-3, 2) and  (-4, 5). Write the resulting 

equation in the form y = mx + b.   

 

 Solution 

(a)  

           
b) 

         
Matched Problem: 
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(a) Find an equation for the line that has slope 2/3 and passes through (6, -2).Write the resulting equation 

in the form Ax + By = C, A >0. 

(b) Find an equation for the line that passes through (2, -3) and (4, 3). Write the resulting equation in the 

form y = mx + b. 

 

 

II.3.2.3: APPLICATIONS 

We will now see how equations of lines occur in certain applications. 

 

Example 6: Cost Equation ample 

  

                The management of a company that manufactures skateboards has fixed costs (costs at 0 output) 

of $300 per day and total costs of $4,300 per day at an output of 100 skateboards per day. Assume that 

cost C is linearly related to output x. 

(a) Find the slope of the line joining the points associated with outputs of 0 and 

100; that is, the line passing through(0, 300) and (100, 4,300). 

(b) Find an equation of the line relating output to cost. Write the final answer in the 

form C = mx + b. 

 (c)Graph the cost equation from part (b) for  0≤x≤200.e m 

 
  Solution 

a) 

         
b) We must find an equation of the line that passes through 10, 3002 with slope 

40. We use the slope-intercept form: 

                                              
c) 
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The fixed cost of $300 per day covers plant cost, insurance, and so on. This cost is incurred whether or 

not there is any production. The variable cost is 40x, which depends on the day’s output. Since increasing 

production from x to x + 1 will increase the cost by $40 (from 40x + 300 to 40x + 340), the slope 40 can 

be 

interpreted as the rate of change of the cost function with respect to production x. 

 

Matched Problem: Answer parts (a) and (b) in Example 6 for fixed costs of $250 per day and total costs 

of $3,450 per day at an output of 80 skateboards per day. 

 

                 In a free competitive market, the price of a product is determined by the relationship 

between supply and demand. If there is a surplus—that is, the supply is greater than the demand—the 

price tends to come down. If there is a shortage—that is, the demand is greater than the supply—the 

price tends to go up. The price tends to move toward an equilibrium price at which the supply and 

demand are equal. The following example introduces the basic concepts. 

 

Example 7: Supply and Demand 

 

                 At a price of $9.00 per box of oranges, the supply is 320,000 boxes and the demand is 

200,000 boxes. At a price of $8.50 per box, the supply is 270,000 boxes and the demand is 300,000 

boxes. 

(a) Find a price–supply equation of the form p = mx + b, where p is the price in dollars and x is the 

corresponding supply in thousands of boxes. 

(b) Find a price–demand equation of the form p = mx + b, where p is the price in dollars and x is the 

corresponding demand in thousands of boxes. 

(c) Graph the price–supply and price–demand equations in the same coordinate system and find their 

point of intersection. 

 

 Solution Ex 

a) To find a price–supply equation of the form p = mx + b, we must find two points of the form (x, p) that 
are on the supply line. From the given supply data, (320, 9) and (270, 8.5) are two such points. First, find 
the slope of the line: 

m 8    EEE                   E           

Now use the point-slope form to find the equation of the line: 

                                                 
b) From the given demand data, (200, 9) and (300, 8.5) are two points on the demand line. 
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              c)From part (a), we plot the points (320, 9) and (270, 8.5) and then draw the line through them. 

We do the same with the points (200, 9) and (300, 8.5) from part (b) (Fig. 4). (Note that we restricted the 

axes to intervals that contain these data points.) To find the intersection point of the two lines, we equate 

the right hand sides of the price–supply and price–demand equations and solve for x: 

 

                                                            Price-supply     Price-demand 
0.01x + 5.8 = -0.005x + 10 

0.015x = 4.2 

x = 280 

         

                          Figure 4: Graphs of price–supply and price–demand equations 

Now use the price–supply equation to find p when x = 280: 

                                 p = 0.01x + 5.8 

                            p = 0.01(280) + 5.8 = 8.6 

As a check, we use the price–demand equation to find p when x = 280: 

                                    p = -0.005x + 10 

                              p = -0.005(280) + 10 = 8.6 

The lines intersect at (280, 8.6). The intersection point of the price–supply and price–demand equations 

is called the equilibrium point, and its coordinates are the equilibrium quantity (280) and the 

equilibrium price ($8.60). These terms are illustrated in Figure 4. 
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CHAPTER III: INEQUALITIES AND ABSOLUTE VALUES       

 

III.1: SOME SIMPLE INEQUALITIES 

Basic inequalities concerning the real numbers are simple, provided that we exercise due care. We begin 

by studying the effect of addition and multiplication on inequalities. 

ADDITION AND MULTIPLICATION RULES.  

Suppose that a,b ∈ R and a < b. Then 

(a) for every c ∈ R, we have a + c < b + c; 

(b) for every c ∈ R satisfying c > 0, we have ac < bc; and (c) for every c ∈ R satisfying c < 0, we 

have ac > bc.In other words, addition by a real number c preserves the inequality. On the other hand, 

multiplication by a real number c preserves the inequality if c > 0 and reverses the inequality if c < 0. 

Remark. We can deduce some special rules for positive real numbers. Suppose that a,b,c,d ∈ R are all 

positive. If a < b and c < d, then ac < bd. To see this, note simply that by part (b) above, we have ac < bc 

and bc < bd. 

SQUARE AND RECIPROCAL RULES.  

Suppose that a,b ∈ R and 0 < a < b. Then 

(a) a2 < b2;  and       (b)  a−1 > b−1. 

Proof. Part (a) is a special case of our Remark if we take c = a and d = b. To show part (b), note that 

 .  

CAUCHY’S INEQUALITY. 

 For every a,b ∈ R, we have a2 + b2 ≥ 2ab. Furthermore, equality holds precisely when a = b. 

Proof.Simply note that  a2 + b2 − 2ab = a2 − 2ab + b2 = (a − b)2 ≥ 0, and that equality holds precisely when 
a − b = 0. We now use some of the above rules to solve inequalities. We shall illustrate the ideas by 
considering a few examples in some detail. 

Example 1: Consider the inequality 4x + 7 < 3. Using the Addition rule and adding −7 to both sides, we 
obtain 4x < −4. Using one of the Multiplication rules and multiplying both sides by the positive real number 
1/4, we obtain x < −1. We have shown that 

 4x + 7 < 3 =⇒ x < −1. 

Suppose now that x < −1. Using one of the Multiplication rules and multiplying both sides by the positive 

real number 4, we obtain 4x < −4. Using the Addition rule and adding 7 to both sides, we obtain 4x + 7 < 3. 

Combining this with our earlier observation, we have now shown that 
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 4x + 7 < 3 ⇐⇒ x < −1. 

We can confirm our conclusion by drawing a graph of the line y = 4x+7 and observing that the part of the 

line below the horizontal line y = 3 corresponds to x < −1 on the x-axis. 

                                                         
Example 2: Consider the inequality −5x + 4 > −1. Using one of the Multiplication rules and multiplying 

both sides by the negative real number −1, we obtain 5x − 4 < 1. Using the Addition rule and adding 4 to 

both sides, we obtain 5x < 5. Using one of the Multiplication rules and multiplying both sides by the positive 

real number 1/5, we obtain x < 1. We have shown that 

 −5x + 4 > −1 =⇒ x < 1. 

Suppose now that x < 1. Using one of the Multiplication rules and multiplying both sides by the positive real 

number 5, we obtain 5x < 5. Using the Addition rule and adding −4 to both sides, we obtain 5x−4 < 1. Using 

one of the Multiplication rules and multiplying both sides by the negative real number −1, we obtain −5x + 

4 > −1. Combining this with our earlier observation, we have now shown that 

 −5x + 4 > −1 ⇐⇒ x < 1. 

We can confirm our conclusion by drawing a graph of the line y = −5x + 4 and observing that the part of the 

line above the horizontal line y = −1 corresponds to x < 1 on the x-axis. 

  7 

  6 

  5 

  4 

  3 

  2 

  1 

 -1 

-1 -2   1 
x 

y 

y  =   3 

y  =   4 x  + 7 
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Example 3: Consider the inequality x2 ≤ a2, where a > 0 is fixed. Clearly x = ±a are the only solutions of 

the equation x2 = a2. So let us consider the inequality x2 < a2. Observe first of all that the inequality is 

satisfied when x = 0. On the other hand, if 0 < x < a, then the Square rule gives x2 < a2. However, if −a < x 

< 0, then using one of the Multiplication rules and multiplying all sides by the negative real number −1, we 

obtain a > −x > 0. It follows from the Square rule that (−x)2 < a2, so that x2 < a2. We have now shown that 

 −a ≤ x ≤ a =⇒ x2 ≤ a2. 

Suppose now that x > a. Then it follows from the Square rule that x2 > a2. On the other hand, suppose that 

x < −a. Using one of the Multiplication rules and multiplying both sides by the negative real number −1, we 

obtain −x > a. It follows from the Square rule that (−x)2 > a2, so that x2 > a2. We have now shown that 

 x < −a or x > a =⇒ x2 > a2. 

It now follows that 

 −a ≤ x ≤ a ⇐⇒ x2 ≤ a2. 

We can confirm our conclusion by drawing a graph of the parabola y = x2 and observing that the part of the 

parabola on or below the horizontal line y = a2 corresponds to −a ≤ x ≤ a on the x-axis. 
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Example 4: Consider the inequality x2 − 4x + 3 ≤ 0. We can write 

x2 − 4x + 3 = x2 − 4x + 4 − 1 = (x − 2)2 − 1, 

so that the inequality is equivalent to (x − 2)2 − 1 ≤ 0, which in turn is equivalent to the inequality (x − 2)2 ≤ 

1, in view of the Addition rule. Now write u = x − 2. Then it follows from Example 6.1.3 that 

 −1 ≤ u ≤ 1 ⇐⇒ u2 ≤ 1. 

Hence 

 −1 ≤ x − 2 ≤ 1 ⇐⇒ (x − 2)2 ≤ 1. 

Using the addition rule on the inequalities on the left hand side, and using our earlier observation, we 

conclude that 

 1 ≤ x ≤ 3 ⇐⇒ x2 − 4x + 3 ≤ 0. 

We can confirm our conclusion by drawing a graph of the parabola y = x2 − 4x + 3 and observing that the 

part of the parabola on or below the horizontal line y = 0 corresponds to 1 ≤ x ≤ 3 on the x-axis. 

                                                                  

Example 5: Consider the inequality below. 

. 

Clearly we cannot have x = 0, as 1/0 is meaningless. We have two cases: 

1)-Suppose that x > 0. Using one of the Multiplication rules and multiplying both sides by the positive real 

number x, we obtain the inequality 1 < 2x. Multiplying both sides by the positive real number 1/2, we obtain 

1/2 < x. Suppose now that 1/2 < x. Using one of the Multiplication rules and multiplying both sides by the 

positive real number 2/x, we obtain the original inequality. We have therefore shown that for x > 0, we have 

  ⇐⇒ . 

2)-Try to use one of the Multiplication rules to show that 

 x < 0 ⇐⇒ . 

The result is obvious, but the proof is slightly tricky. Combining the two parts, we conclude that 

x 

y 

1 3 

3 

1 

2 

- 1 
2 4 

y = x 2 − 4 x +3 
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 x < 0 or  ⇐⇒ . 

We can confirm our conclusion by drawing a graph of the hyperbola y = 1/x and observing that the part of 

the hyperbola below the horizontal line y = 2 corresponds to x < 0 together with x > 1/2 on the x-axis. 

                                

 

 

III.2: ABSOLUTE VALUES 

Definition. For every a ∈ R, the absolute value |a| of a is a non-negative real number satisfying 

                                               

Remark. If we place the number a on the real number line, then the absolute value |a| represents the 

distance of a from the origin 0. 

PROPERTIES OF ABSOLUTE VALUES.  

For every a, b ∈ R, we have                                    
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The graph of the function y = |x| is given below, where a ∈ R is a non-negative real number. 

                                

As a ∈ R is non negative, then 

|x| ≤ a if and only if − a ≤ x ≤ +a, and |x| < aif and only if − a < x < +a. 

Example 6: The equation |x| = 4 has two solutions x = ±4. 

Example 7. The equation |2x + 1| = 5 has two solutions, one satisfying 2x + 1 = 5 and the other satisfying 

2x + 1 = −5. Hence x = 2 or x = −3.  

Example 8: The inequality |x| < 5 is satisfied precisely when −5 < x < 5. 

Example 9:. The inequality |2x + 1| ≤ 9 is satisfied precisely when −9 ≤ 2x + 1 ≤ 9; in other words, when 

−5 ≤ x ≤ 4. 

Example 10:The equation 1 is satisfied only if the right hand side is nonnegative, so 

that we must have x ≥ 1. Squaring both sides, we have x2+4x+13 = (x−1)2 = x2−2x+1, so that 6x + 12 = 0, 

giving x = −2. Hence the equation has no real solution x. 

Example 11. Consider the inequalities 3 < |x+4| < 7. Note first of all that the inequality |x+4| < 7 holds 

precisely when −7 < x + 4 < 7; in other words, when −11 < x < 3. On the other hand, the inequality |x+4| ≤ 

3 holds precisely when −3 ≤ x+4 ≤ 3; in other words, precisely when −7 ≤ x ≤ −1. Hence the inequality |x 

+ 4| > 3 holds precisely when x < −7 or x > −1. It follows that the original inequalities hold precisely when 

−11 < x < −7 or −1 < x < 3. We can confirm our conclusion by drawing a graph of the function y = |x + 4| 

and observing that the part of the graph between the horizontal lines y = 3 and y = 7 corresponds to −11 < 

x < −7 together with −1 < x < 3 on the x-axis. 

y 
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ACTIVITIES OF CHAPTER III 

ACTVITIES III.1: Suppose that α and β are two positive real numbers. The number ) is called the 

arithmetic mean of α and β, while the number √αβ is called the geometric mean of α and β. 

a) Prove that ); in other words, the geometric mean never exceeds the arithmetic mean. 

b) Show that equality holds in part (a) precisely when α = β. 

 

ACTVITIES III.2: For each of the following inequalities, find all real values of x satisfying the inequality: 

 a) 2x + 4 < 6 b) 5 − 3x > 11 c) 7x + 9 > −5 d) 4x + 4 < 28 

 e) 2x + 5 < 3 f) 4 − 6x ≥ 10 

ACTVITIES III.3: Determine all real values of x for which the inequalities 5 < 2x + 7 ≤ 13 hold. 

ACTVITIES III.4:For each of the following inequalities, determine all real values of x for which the inequality 

holds, taking care to distinguish the two cases x > 0 and x < 0, and explain each step of your argument by 

quoting the relevant rules concerning inequalities: 

  

ACTVITIES III.5: For each of the following inequalities, determine all real values of x for which the inequality 

holds, taking care to distinguish two cases, and explain each step of your argument by quoting the relevant 

rules concerning inequalities: 

 

 
 

 

1. Find all solutions of the inequality picture. |x + 2| < 6, and confirm your answer by drawing a suitable 

2. For each of the following inequalities, determine all real values of x for which the inequality holds: 

 a) 1 < |3x − 5| ≤ 7 b) 1 ≤ |(x − 1)3| ≤ 8 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV: SYSTEMS OF LINEAR EQUATIONS 
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IV.1: INTRODUCTION 

 

                 Most linear systems of any consequence involve large numbers of equations and variables. It 

is impractical to try to solve such systems by hand. There are a wide array of approaches to solving linear 

systems, ranging from graphing calculators to software and spreadsheets. In this chapter,we-------- 

 

IV.2: SYSTEMS OF LINEAR EQUATIONS 

 

            Let us consider a pair of simultaneous linear equations (system A) in two variables, of the type 

                                               a1x + b1y = c1, 

                                               a2x + b2y = c2, 

where a1, a2, b1, b2, c1, c2 ∈ R. Multiplying the first equation in (A) by b2 and multiplying the second equation 

in (A) by b1, we obtain (B): 

                                                          

Subtracting the second equation in (B) from the first equation, we obtain 

(a1b2x + b1b2y) − (a2b1x + b1b2y) = c1b2− c2b1. 

Some simple algebra leads to(C): 

                              (a1b2− a2b1)x = c1b2− c2b1. 

On the other hand, multiplying the first equation in (A) by a2 and multiplying the second equation in (A) by 

a1, we obtain (D): 

                                             a1a2x + b1a2y = c1a2, 

                                             a1a2x + b2a1y = c2a1. 

Subtracting the second equation in (D) from the first equation, we obtain 

(a1a2x + b1a2y) − (a1a2x + b2a1y) = c1a2− c2a1. 

Some simple algebra leads to (E) 

 

(b1a2− b2a1)y = c1a2− c2a1.  

Suppose that:  

                               
Then (C) and (E) can be written in the form F) 

 

  and .
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                In practice, we do not need to remember these formulas. It is much easier to do the calculations 

by using some common sense and cutting a few corners in doing so. 

We have the following geometric interpretation. Each of the two linear equations in (A) represents a line 

on the xy-plane. The condition 

                                                        

ensures that the two lines are not parallel, so that they intersect at precisely one point, given by (F) 

Example1:. Suppose that 

                                             x + y = 12, 

                                          x − y = 6. 

Note that we can eliminate y by adding the two equations. More precisely, we have 

(x + y) + (x − y) = 12 + 6. 

This gives 2x = 18, so that x = 9. We now substitute the information x = 9 into one of the two original 

equations. Simple algebra leads to y = 3. We have the following picture. 

                                              

Example 2:. Suppose that 

                                                        x + y = 32,  

                                                        3x + 2y = 70. 

We can multiply the first equation by 2 and keep the second equation as it is to obtain 

2x + 2y = 64, 3x + 2y = 70. 
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The effect of this is that both equations have a term 2y. We now subtract the first equation from the 

second equation to eliminate this common term. More precisely, we have 

(3x + 2y) − (2x + 2y) = 70 − 64. 

This gives x = 6. We now substitute the information x = 6 into one of the two original equations. Simple 

algebra leads to y = 26. 

Example 3. Suppose that 

                                                      3x + 2y = 10, 

                                                       4x − 3y = 2. 

We can multiply the first equation by 4 and the second equation by 3 to obtain 

12x + 8y = 40, 

12x − 9y = 6. 

The effect of this is that both equations have a term 12x. We now subtract the second equation from the 

first equation to eliminate this common term. More precisely, we have 

(12x + 8y) − (12x − 9y) = 40 − 6. 

This gives 17y = 34, so that y = 2. We now substitute the information y = 2 into one of the two original 

equations. Simple algebra leads to x = 2. The reader may try to eliminate the variable y first and show 

that we must have x = 2. 

 Example 4:.Suppose that 

, 

We can multiply the first equation by 7 and the second equation by 5 to obtain 

. 

The effect of this is that both equations have a term 35y but with opposite signs. We now add the two 

equation to eliminate this common term. More precisely, we have 

(49x − 35y) + (10x + 35y) = 112 + 65. 

This gives 59x = 177, so that x = 3. We now substitute the information x = 3 into one of the two original 

equations. Simple algebra leads to y = 1. 

Example 5: Suppose that the difference between two numbers is equal to 11, and that twice the smaller 

number minus 4 is equal to the larger number. To find the two numbers, let x denote the larger number 

and y denote the smaller number. Then we have x − y = 11 and 2y − 4 = x, so that 

                                      x − y = 11, 

                                      x − 2y = −4. 
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We now eliminate the variable x by subtracting the second equation from the first equation. More 

precisely, we have 

(x − y) − (x − 2y) = 11 − (−4). 

This gives y = 15. We now substitute the information y = 15 into one of the two original equations. Simple 

algebra leads to x = 26. 

Example 6:. Suppose that a rectangle is 5cm longer than it is wide. Suppose also that if the length and 

width are both increased by 2cm, then the area of the rectangle increases by 50cm2. To find the 

dimension of the rectangle, let x denote its length and y denote its width. Then we have x = y+5 and 

(x+2)(y+2)−xy = 50. Simple algebra shows that the second equation is the same as 2x+2y+4 = 50. We 

therefore have 

, 

We can multiply the first equation by 2 and keep the second equation as it is to obtain 

, 

We now eliminate the variable y by adding the two equations. More precisely, we have 

(2x − 2y) + (2x + 2y) = 10 + 46. 

This gives 4x = 56, so that x = 14. It follows that y = 9. 

The idea of eliminating one of the variables can be extended to solve systems of three linear equations. 

We illustrate the ideas by the following examples. 

Example 6: Suppose that 

x + y + z = 6, 

                                                          2x + 3y + z = 13,  

                                                             x + 2y − z = 5. 

Adding the first equation and the third equation, or adding the second equation and the third equation, 

we eliminate the variable z on both occasions and obtain respectively 

2x + 3y = 11, 3x + 5y = 18. 

Solving this system, the reader can show that x = 1 and y = 3. Substituting back to one of the original 

equations, we obtain z = 2. 

Example 7. Suppose that 

                  x − y + z = 10, 4x + 2y − 3z = 8, 3x − 5y + 2z = 34. 

We can multiply the three equations by 6, 2 and 3 respectively to obtain 

6x − 6y + 6z = 60,            8x + 4y − 6z = 16,             9x − 15y + 6z = 102. 

The reason for the multiplication is to arrange for the term 6z to appear in each equation to make the 

elimination of the variable z easier. Indeed, adding the first equation and the second equation, or adding 
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the second equation and the third equation, we eliminate the variable z on both occasions and obtain 

respectively: 

                                                     14x − 2y = 76, 17x − 11y = 118. 

 

Multiplying the first equation by 11 and the second equation by 2, we obtain 

                                            154x − 22y = 836, 34x − 22y = 236. 

Eliminating the variable y, we obtain 120x = 600, so that x = 5. It follows that y = −3. Using now one of 

the original equations, we obtain z = 2. 

Example 8: Suppose that 

6x + 4y − 2z = 0, 

3x − 2y + 4z = 3, 5x − 2y + 6z = 3. 

Multiplying the last two equations by 2, we obtain 

6x + 4y − 2z = 0, 

6x − 4y + 8z = 6, 10x − 4y + 12z = 6. 

The reason for the multiplication is to arrange for the term 4y to appear in each equation to make the 

elimination of the variable y easier. Indeed, adding the first equation and the second equation, or adding 

the first equation and the third equation, we eliminate the variable y on both occasions and obtain 

respectively 

12x + 6z = 6, 16x + 10z = 6. 

Solving this system, the reader can show that x = 1 and z = −1. Substituting back to one of the original 

equations, we obtain y = −2. 

Example 9: Suppose that 

                      2x + y − z =9, 5x + 2z = −3, 7x − 2y = 1. 

Our strategy here is to eliminate the variable y between the first and third equations. To do this, the first 

equation can be written in the form 4x+2y −2z = 18. Adding this to the third equation, and also keeping 

the second equation as it is, we obtain 

                                                    11x − 2z = 19, 5x + 2z = −3. 

Solving this system, the reader can show that x = 1 and z = −4. Substituting back to one of the original 

equations, we obtain y = 3. The reader may also wish to first eliminate the variable z between the first 

two equations and obtain a system of two equations in x and y. 
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IV.3: QUADRATIC EQUATIONS 

Consider an equation of the type 

 ax2 + bx + c = 0, (A) 

where a,b,c ∈R are constants and  a≠ 0 .To solve such an equation, we observe first of all that 

 

precisely when 

 . (B) 

There are three cases: 

(1) If b2 − 4ac < 0, then the right hand side of (B) is negative. It follows that (B) is never 

satisfied for any real number x, so that the equation (A) has no real solution. 

(2) If b2− 4ac = 0, then (B) becomes 

 , so that . 

Indeed, this solution occurs twice, as we shall see later. 

(3) If b2− 4ac > 0, then (B) becomes 

 , so that . 

We therefore have two distinct real solutions for the equation (A). 

Example 1. For the equation 2x2+6x+4 = 0, we have (a,b,c) = (2,6,4), so that b2−4ac = 4 > 0. It follows 

that this equation has two distinct real solutions, given by 

. 

Observe that 2x2 + 6x + 4 = 2(x + 1)(x + 2). 

Example 2: For the equation x2+2x+3 = 0, we have (a,b,c) = (1,2,3), so that b2−4ac = −8 < 0. It follows 

that this equation has no solution. 

Example 3. For the equation 3x2 − 12x + 12 = 0, we have b2 − 4ac = 0. It follows that this equation has 

one real solution, given by x = 2. Observe that 3x2 − 12x + 12 = 3(x − 2)2. This is the reason we say that 

the root occurs twice. 
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IV.3: FACTORIZATION AGAIN 

Consider equation (A) again. Sometimes we may be able to find a factorization of the form 

 ax2 + bx + c = a(x − α)(x − β), (C) 

where α,β ∈R. Clearly x = α and x = β are solutions of the equation (9). 

Example 1: For the equation x2− 5x = 0, we have the factorization 

x2− 5x = x(x − 5) = (x − 0)(x − 5). 

It follows that the two solutions of the equation are x = 0 and x = 5. 

Example 2:. For the equation x2 − 9 = 0, we have the factorization x2 − 9 = (x − 3)(x + 3). It follows that 

the two solutions of the equation are x = ±3. 

Note that 

a(x − α)(x − β) = a(x2− (α + β)x + αβ) = ax2− a(α + β)x + aαβ. 

It follows from (C) that 

ax2 + bx + c = ax2− a(α + β)x + aαβ. 

Equating corresponding coefficients, we obtain 

 b = −a(α + β) and c = aαβ. 

We have proved the following result-SUM AND PRODUCT OF ROOTS OF A QUADRATIC EQUATION.  

Suppose that x = α and x = β are the two roots of a quadratic equation ax2 + bx + x = 0. Then 

                                and . 

 

Example 3.For the equation x2− 5x − 7 = 0, we have (a,b,c) = (1,−5,−7), and 

. 

Note that 

 = 5 and . 
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Example 4. For the equation x2− 13x + 4 = 0, we have (a,b,c) = (1,−13,4), and 

. 

Note that 

 = 13 and . 

We conclude this section by studying a few more examples involving factorization of quadratic 

polynomials. 

Example 5. Consider the expression x2 − 4x + 3. The roots of the equation x2 − 4x + 3 = 0 are given by 

  

                    
 

 

Example 6. Consider the expression 2x2 +5x+2. The roots of the equation 2x2 +5x+2 = 0 are given by 

  and . 

Hence we have 

. 

Example 7. Consider the expression 4x2−x−14. The roots of the equation 4x2−x−14 = 0 are given by 

 = 2 and . 

Hence we have 

. 

Example.8 We have 

(x + 2)2− (2x − 1)2 = (x2 + 4x + 4) − (4x2− 4x + 1) = x2 + 4x + 4 − 4x2 + 4x − 1 = −3x2 + 8x + 3. The roots 

of the equation −3x2 + 8x + 3 = 0 are given by 

  and . 

Hence 

. 
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Alternatively, we can use one of the Laws on squares (writing a = x + 2 and b = 2x − 1). We have 

(x + 2)2− (2x − 1)2 = ((x + 2) − (2x − 1))((x + 2) + (2x − 1)) 

= (x + 2 − 2x + 1)(x + 2 + 2x − 1) = (3 − x)(3x + 1). 

Example 9: Consider the expression 6p − 17pq + 12pq2. Taking out a factor p, we have 6p − 17pq 

+ 12pq2 = p(6 − 17q + 12q2). 

Consider next the quadratic factor 6 − 17q + 12q2. The roots of the equation 6 − 17q + 12q2 = 0 are given 

by 

  and . 

Hence 

. 

Example 10. We have 10a2b + 11ab − 6b = b(10a2 + 11a − 6). Consider the quadratic factor 10a2 + 11a 

− 6. The roots of the equation 10a2 + 11a − 6 = 0 are given by 

  and . 

Hence 

. 

Example 11:. Consider the expression 

Note that + 1). Hence 

 

Example 12.: We have 
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IV.4: HIGHER ORDER EQUATIONS 

For polynomial equations of degree greater than 2, we do not have general formulae for their solutions. 

However, we may occasionally be able to find some solutions by inspection. These may help us find 

other solutions. We shall illustrate the technique here by using three examples. 

Example 1. Consider the equation x3−4x2 +2x+1 = 0. It is easy to see that x = 1 is a solution of this cubic 

polynomial equation. It follows that x − 1 is a factor of the polynomial x3− 4x2 + 2x + 1. Using long division, 

we have the following: 

 

Hence x3 − 4x2 + 2x + 1 = (x − 1)(x2 − 3x − 1). The other two roots of the equation are given by the two 

roots of x2− 3x − 1 = 0. These are 

. 

Example 2. Consider the equation x3+2x2−5x−6 = 0. It is easy to see that x = −1 is a solution of this cubic 

polynomial equation. It follows that x + 1 is a factor of the polynomial x3 + 2x2− 5x − 6. Using long division, 

we have the following: 

 

Hence x3 + 2x2 − 5x − 6 = (x + 1)(x2 + x − 6). The other two roots of the equation are given by the two 

roots of x2 + x − 6 = 0. These are 

. 

Example 3. Consider the equation x4 + 7x3 − 6x2 − 2x = 0. It is easy to see that x = 0 and x = 1 are 

solutions of this biquadratic polynomial equation. It follows that x(x − 1) is a factor of the polynomial x4 + 
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7x3− 6x2− 2x. Clearly we have x4 + 7x3− 6x2− 2x = x(x3 + 7x2− 6x − 2). On the other hand, using long 

division, we have the following: 

                  
  

Hence x4 + 7x3 − 6x2 − 2x = x(x − 1)(x2 + 8x + 2). The other two roots of the equation are given by the two 

roots of x2 + 8x + 2 = 0. These are 

. 
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ACTIVITIES FOR CHAPTER IV 

ACTIVITIES IV.1: Solve each of the following equations: 

 

 
ACTIVITIES IV.2: A rectangle is 2 metres longer than it is wide. On the other hand, if each side of the 

rectangle is increased by 2 metres, then the area increases by 16 square metres. Find the dimension of 

the rectangle. 

ACTIVITIES IV.3: A rectangle is 10 metres wider than it is long. On the other hand, if the width and length 

are both decreased by 5 metres, then the area of the rectangle decreases by 125 square metres. Find 

the dimension of the rectangle. 

ACTIVITIES IV.4: The lengths of the two perpendicular sides of a right-angled triangle differ by 6 

centimetres. On theother hand, if the length of the longer of these two sides is increased by 3 centimetres 

and the length of the shorter of these two sides is decreased by 2 centimetres, then the area of the right-

angled triangle formed is decreased by 5 square centimetres. What is the dimension of the original 

triangle? 

ACTIVITIES IV.5:Solve each of the following systems of linear equations: 

 

ACTIVITIES IV.6: Determine the number of solutions of each of the following quadratic equations and 

find the solutions: 

  

ACTIVITIES IV.7: Factorize each of the following expressions: 

 a) 14x2 + 19x − 3 b) 6x2 + x − 12 c) (5 

 d) (2x + 1)2 + x(2 + 4x) e) 4x3 + 9x2 + 2x f) 

g) 8x − 2xy − xy2 

ACTIVITIES IV.8:Simplify each of the following expressions, showing all the steps of your argument 

carefully: 

 a)  b)  

 c)  d)  

ACTIVITIES IV.8: Study each of the following equations for real solutions: 

 a) x3− 6x2 + 11x − 6 = 0 b) x3− 3x2 + 4 = 0 c) x3 + 2x2 + 6x + 5 = 0 
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 d) x3− x2− x + 1 = 0 e) x3 + 2x2− x − 2 = 0 
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CHAPTER V: MATRICES 

 

 Consider the two linear equations: 

, 

It is easy to check the two equations are satisfied when x = 1 and y = 2. We can represent these two 

linear equations in matrix form as 

 , 

where we adopt the convention that 

  and  

represent respectively the information 3x + 4y = 11 and 5x + 7y = 19. Under this convention, it is easy to 

see that 

 

for every x,y ∈R. Next, observe that 

 , 

where, under a convention slightly more general to the one used earlier, we have representing 

respectively (7×3) + ((−4)×5) = 1, (7×4) + ((−4)×7) = 0, ((−5)×3) + (3×5) = 0 and 

((−5) × 4) + (3 × 7) = 1. 

. It now follows on the one hand that, 

 

and on the other hand that 

. 

The convention mentioned in the example above is simply the rule concerning the multiplication of 

matrices. The purpose of this chapter is to study the arithmetic in connection with matrices. We shall be 

concerned primarily with 2 × 2 real matrices. These are arrays of real numbers of the form                                           

                                                            , 

consisting of two rows counted from top to bottom, and two columns counted from left to right. An 

entry aij thus corresponds to the entry in row i and column j. 

V.1: ARITHMETIC OF MATRICES 



 

52 
 

*ADDITION AND SUBTRACTION.  

Suppose that 

        and  

are two 2 × 2 matrices. Then 

  and . 

In other words, we perform addition and subtraction entrywise. The operations addition and 

subtraction are governed by the following rules: 

(a) Operations within brackets are performed first. 

(b) Addition and subtraction are performed in their order of appearance. 

(c) A number of additions can be performed in any order. For any 2 × 2 matrices 

A,B,C, we have 

A + (B + C) = (A + B) + C and A + B = B + A. 

Example 1. We have 

                         

and 

Example 2. We have 

, 

and 

Example 3.Like real numbers, it is not true in general that A − (B − C) = (A − B) − C. Note 

that 

and 

 

Remark.   The matrix                   

satisfies 0 + A = A + 0 = A for any 2 × 2 matrix A, and plays a role analogous to the real number 0 in 

addition of real numbers. This matrix 0 is called the zero matrix. 

*MULTIPLICATION BY A REAL NUMBER.  
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Suppose that 

                                                           

is a 2 × 2 matrix, and that r is a real number. Then 

. 

In other words, we multiply each entry of A by the same real number r. This operation is governed by 

the following rules: 

(a) Operations within brackets are performed first. 

(b) If there are no brackets to indicate priority, then multiplication by a real number 

takes precedence over addition and subtraction. 

(c) A number of multiplications by real numbers can be performed in any order. 

For any 2 × 2 matrix A and any real numbers r,s ∈R, we have (rs)A = r(sA). 

(d) For any 2 × 2 matrix A and any real numbers r,s ∈R, we have (r + s)A = rA + 

sA. 

(e) For any 2 × 2 matrices A,B and any real number r ∈R, we have r(A + B) = rA + 

rB. 

Example 3. We have 

. 

Example 4. We have 

 . 

Example 5. We have 

 . 

Example 6. We have 

 . 
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*MULTIPLICATION OF MATRICES.  

Suppose that 

  and  

are 2 × 2 matrices. Then 

. 

This operation is governed by the following rules: 

(a) Operations within brackets are performed first. 

(b) If there are no brackets to indicate priority, then multiplication takes 

precedence over addition and subtraction. 

(c) For any 2 × 2 matrices A,B,C, we have (AB)C = A(BC). 

(d) For any 2 × 2 matrices A,B and any real numbers r ∈R, we have r(AB) = (rA)B 

= A(rB). 

 (e) For any 2 × 2 matrices A,B,C, we have A(B + C) = AB + AC and (A + B)C = AC + BC. 

Remarks      1. Note that the definition above agrees with the convention adopted in Example II.1.1. 

Observe that we have 

, 

2.The matrix 

satisfies IA = AI = A for any 2 × 2 matrix A, and plays a role analogous to the real number 1 in multiplication 

of real numbers. This matrix I is called the identity matrix. 

3.Multiplication of matrices is generally not commutative; in other words, given two 2×2 

matrices A and B, it is not automatic that AB = BA. For example, let 

  and  . 

Then 
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  and

  . 

Example 7. We have 

, 

Example 8. We have 

, 

and 

. 

Since I is the identity matrix, we would like to find a technique to obtain, for any given 2×2 matrix A, an 

inverse 2 × 2 matrix A−1 such that AA−1 = A−1A = I. This is not always possible, since in the case of real 

numbers, the number 0 does not have a multiplicative inverse. We therefore need a condition on 2 × 2 

matrices which is equivalent to saying that a real number is non-zero.  

*MULTIPLICATIVE INVERSE. 

 For any 2 × 2 matrix 

 

satisfying the condition , the matrix 

 

satisfies AA−1 = A−1A = I. In this case, we say that A is invertible with multiplicative inverse A−1. 

Remarks. (1) The quantity ad − bc is known as the determinant of the matrix A. The result above 

says that any 2 × 2 matrix is invertible as long as it has non-zero determinant. 

(2) If two 2 × 2 matrices A and B both have non-zero determinants, then it can be shown that the matrix 

product AB also has non-zero determinant. We also have (AB)−1 = B−1A−1. 

Example 9.Recall Example1. It is easy to check that 
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. 

Example 10.The matrix  has determinant 0 and so is not invertible. 

Example 11:  

Consider the matrices 

                                              and  . 

Then 

Note also that 

We have 

 

. 

V.2.:APPLICATION TO LINEAR EQUATIONS 

We now return to the problem first discussed in previuos section. Consider the two linear equations 

                                                            ,where a,b,c,d,s,t ∈R are given and x and y are 

the unknowns. We can   represent these two linear equations in matrix form: 

 . 

If ad-bc≠0, then the 2 × 2 matrix on the left hand side is invertible. It follows that left 

hand side is invertible. It follows that there exist real numbers  α,β,γ,δ 𝜖R  such that 

 

Example 12: Suppose that 
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, 

The two linear equations can be represented in matrix form 

 . 

Note now that the matrix       has determinant −1 and multiplicative inverse : 

 

It follows that, 
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                                          ACTIVITIES FOR CHAPTER V 

ACTIVITY V.1: Write each of the following systems of linear equations in matrix form: 

 

ACTIVITY V.2: Let 

                                          

a) Verify that (A + B) + C = A + (B + C) and A + B = B + A. 

b) Find A + 3B and 7A − 2B + 3C. 

c) Verify that (AB)C = A(BC). 

d) Is it true that AB = BA? Comment on the result. 

e) Find A−1 and B−1. 

f) Find (AB)−1, and verify that (AB)−1 = B−1A−1. 

ACTIVITY V.3: Solve each of the systems of linear equations in Question 1 by using inverse matrices 
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CHAPTER VI: FUNCTIONS AND GRAPHS 

 
INTRODUCTION 
 

                    The function concept is one of the most important ideas in mathematics. The 

study of mathematics beyond the elementary level requires a firm understanding of a basic list of 

elementary functions, their properties, and their graphs. Then we will learn how to apply them  to 

different models in our everyday life. 

 
VI.1: FUNCTIONS 
 

                     A function is a correspondence between two sets of elements such that to each element 

in the first set, there corresponds one and only one element in the second set (or a function is a rule 

that assigns to each object in a set A exactly one object in a set B-see figure 1). The set A is called the 

domain of the function, and the set of assigned objects in B is called the range.  

              
                                            Figure 1: Interpretations of the function f(x). 

 

                Tables 1 and 2 specify functions since to each domain value, there corresponds exactly one 

range value (for example, the cube of -2 is -8 and no other number). On the other hand, Table 3 does 

not specify a function since to at least one domain value, there corresponds more than one range value 

(for example, to the domain value 9, there corresponds -3 and 3, both square roots of 9). 

             ;   ;    

 

                For most functions, the domain and range will be collections of real numbers and the function 

itself will be denoted by a letter such as f. The value that the function f assigns to the number x in the 

domain is then denoted by f (x) (read as“f of x”), which is often given by  formulas, such as : 
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  More complicated equations in two variables, such as y = 9 - x2 or x2 = y4, are more difficult to graph. 

To sketch the graph of an equation, we plot enough points from its solution set in a rectangular 

coordinate system so that the total graph is apparent, and then we connect these points with a smooth 

curve. This process is called point-by-point plotting. Let us sketch the previous equations: 

 

A) f (x) =y = 9 - x2   

 

                    Make up a table of solutions—that is, ordered pairs of real numbers that satisfy the given 

equation. For easy mental calculation, choose integer values for x. 

 

                      
 

                  After plotting these solutions, if there are any portions of the graph that are unclear, plot 

additional points until the shape of the graph is apparent. Then join all the plotted points with a smooth 

curve (Fig. 2). Arrowheads are used to indicate that the graph continues beyond the portion shown 

here with no significant changes in shape. 

 

                                                    
                                                             Figure 2: Graph of y = 9 - x2   

(B)   x2 = y4 

              Again we make a table of solutions—here it may be easier to choose integer values for y and 

calculate values for x. Note, for example, that if y = 2, then x = {4; that is, the ordered pairs (4, 2) and (-

4, 2) are both in the solution set. 

 

 
 

We plot these points and join them with a smooth curve (Fig. 3). 
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                                                                 Figure 3: x2 = y4 

 

              The input values are domain values, and the output values are range values. The 

equation assigns each domain value x a range value y. The variable x is called an independent 

variable (since values can be “independently” assigned to x from the domain), and y is called a 

dependent variable (since the value of y “depends” on the value assigned to x). In general, any 

variable used as a placeholder for domain values is called an independent variable; any variable that 

is used as a placeholder for range values is called a dependent variable. 

               If in an equation in two variables, we get exactly one output (value for the dependent 

variable) for each input (value for the independent variable), then the equation, specifies a function. 

The graph of such a function is just the graph of the specifying equation. If we get more than one 

output for a given input, the equation does not specify a function. 

 

Example 1: Determine which of the following equations specify functions with independent variable x. 

(A) 4y - 3x = 8,    x a real number        (B) y2 - x2 = 9, x a real number 

Solution 

(A) Solving for the dependent variable y, we have 

                                        
Since each input value x corresponds to exactly one output value (y = 2 + 3/4x),  we see that equation 

(1) specifies a function. 

(B) Solving for the dependent variable y, we have 

                                                                        
Since 9 + x2 is always a positive real number for any real number x, and since,each positive real 

number has two square roots,* then to each input value x there corresponds two output values :                 

                                                 
For example, if x = 4, then equation (2) is satisfied for y = 5 and for y = -5. So equation (2) does not 

specify a function. 
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                  Since the graph of an equation is the graph of all the ordered pairs that satisfy the 

equation, it is very easy to determine whether an equation specifies a function by examining its graph. 

The graphs of the two equations we considered in example 1 are shown in figure 4.  In figure 4 A, we 

notice that any vertical line will intersect the graph of the equation 4y - 3x = 8 in exactly one point. This 

shows that to each x value, there corresponds exactly one y value, confirming our conclusion that this 

equation specifies a function. On the other hand, Figure 4B shows that there exist vertical lines that 

intersect the graph of          y2 - x2 = 9 in two points. This indicates that there exist x values to which 

there correspond two different y values and verifies our conclusion that this equation does not specify a 

function: 

                            
                                             Figure 4 A                                             Figure 4 B 

These observations are generalized in this theorem- vertical-line test for a function:   

                   “An equation specifies a function if each vertical line in the coordinate system passes 

through, at most, one point on the graph of the equation.If any vertical line passes through two or more 

points on the graph of an equation, then the equation does not specify a function” 

                     

                    Functions are often defined using more than one formula, where each individual formula 

describes the function on a subset of the domain. A function defined in this way is sometimes called a 

piecewise-defined function. Here is an example of such a function: 

 

Example 2: 
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                   Unless otherwise specified, if a formula (or several formulas-see above) is used to define a 

function f, then we assume the domain of f to be the set of all numbers for which f(x) is defined (as a 

real number). We refer to this as the natural domain of f. 

                   Determining the natural domain of a function often amounts to excluding all numbers 

x that result in dividing by 0 or in taking the square root of a negative number. This procedure is 

illustrated in example 3: 

Find the domain and range of each of these functions. 

                               
Solution 

                     a. Since division by any number other than 0 is possible, the domain of f is the set of all 

numbers x such that x-3≠ 0; that is, x ≠3. The range of f is the set of all numbers y except 0, since for 

any   y≠ 0, there is an x such that in particular,  

                                                                     . 

b.Since negative numbers do not have real square roots, g(t) can be evaluated only when t -2 ≥ 0 so 

the domain of g is the set of all numbers t such that t≥2.The range of g is the set of all nonnegative 

numbers, for if y≥0 is any such number, there is a t such that, 

                                                                                       
 

VI.2: FUNCTIONS USED IN ECONOMICS 

 

                       There are several functions associated with the marketing of a particular commodity: 

The demand function D(x) for the commodity is the price p= D(x) that must be charged for each unit 

of the commodity if x units are to be sold (demanded). 

The supply function S(x) for the commodity is the unit price p=S(x) at which producers are willing to 

supply x units to the market. The revenue R(x) obtained from selling x units of the commodity is given 

by the product: R(x) = (number of items sold) (price per item)=xp(x) 

                      The cost function C(x) is the cost of producing x units of the commodity. The profit 

function P(x) is the profit obtained from selling x units of the commodity and is given by the difference: 

                                            
Generally speaking, the higher the unit price, the fewer the number of units demanded, and vice versa. 

Conversely, an increase in unit price leads to an increase in the number of units supplied. Thus, 

demand functions are typically decreasing (“falling” from left to right), while supply functions are 

increasing (“rising”), as illustrated below: 

 

                                                            
 

Example: 
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Market research indicates that consumers will buy x thousand units of a particular kind of coffee maker 

when the unit price is 

                                             p(x)=-0.27x – 51 dollars.  

The cost of producing the x thousand units is 

                                             C(x)=2.23x2+3.5x +85 thousand dollars. 

a. What are the revenue and profit functions, R(x) and P(x), for this production process? 

b. For what values of x is production of the coffee makers profitable? 

 

Solution 
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CHAPTER VII: INTRODUCTION TO LIMITS 

 

INTRODUCTION 

                 How do algebra and calculus differ? The two words static and dynamic 

probably come as close as any to expressing the difference between the two disciplines. In algebra, we 

solve equations for a particular value of a variable—a static notion. In calculus, we are interested in 

how a change in one variable affects another variable—a dynamic notion.Isaac Newton (1642–1727) 

of England and Gottfried Wilhelm von Leibniz (1646–1716) of Germany developed calculus 

independently to solve problems concerning motion. Today calculus is used not just in the physical 

sciences, but also in business, economics, life sciences, and social sciences—any discipline that seeks 

to understand dynamic phenomena. We introduce the derivative and the integral, the two key concepts 

of calculus. Both key concepts depend on the notion of limit, explained here and will consider many 

applications of limits and derivatives. 

 

VII.1: BRIEF REVIEW OF FUNCTIONS GRAPHS 

 

           The graph of the function y = f(x) = x + 2 is the graph of the set of all ordered 

pairs (x, f(x) ). The figure 1 shows the ordered pairs 

                                         
 plotted on the graph of f: 

                                                        
 

                                                           Figure 1: Graph of y = f(x) = x + 2 

 

Now let us find of a function from Its Graph in completing the following table, using the given graph of the 

function g. 

                                  ;                
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To determine g(x), proceed vertically from the x value on the x axis to the graph of g and then 

horizontally to the corresponding y value g(x) on the y axis (as indicated by the dashed lines). 

 

                             
 Matched Problem: Complete the following table, using the given graph of the function h. 

 

 

VII.2-LIMITS: A GRAPHICAL APPROACH 

 

                            We introduce the important concept of a limit through an example, which leads to an 

intuitive definition of the concept. 

Let analyse a Limit of f(x) = x + 2 and discuss the behavior of the values of f(x) when x is close to 2. 

We begin by drawing a graph of f that includes the domain value x = 2 (fig. 2): 

 

                                               
                                               Figure 2: Domain value x=2 in f(x)= x + 2 

In Figure 2, we are using a static drawing to describe a dynamic process. This requires careful 

interpretation. The thin vertical lines in Figure 2 represent values of x that are close to 2. The 

corresponding horizontal lines identify the value of f(x) associated with each value of x. [the previous 

example dealt with the relationship between x and f(x) on a graph.] The graph in Figure 2 indicates that 

as the values of x get closer and closer to 2 on either side of 2, the corresponding values of f(x) get 

closer and closer to 4. Symbolically, we write 

                                                     
This equation is read as “The limit of f(x) as x approaches 2 is 4.” Note that f(x) = 4. That is, the value of 

the function at 2 and the limit of the function as x approaches 2 are the same. This relationship can be 

expressed as  

                                                      
Graphically, this means that there is no hole or break in the graph of f at x = 2. 
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Matched Problem: Let f(x) = x + 1. Discuss the behavior of the values of f(x) when x is close to 1. 

                  We now present an informal definition of the important concept of a limit and will write: 

 

                                  
if the functional value f(x) is close to the single real number L whenever x is close, 

but not equal, to c (on either side of c). 

Note: The existence of a limit at c has nothing to do with the value of the function at c. In fact, c may 

not even be in the domain of f. However, the function must be defined on both sides of c. 

 
                *To make the informal definition of limit precise, we must make the word close more 

precise. This is done as follows: We write  

 

 
This definition is used to establish particular limits and to prove many useful properties of limits that will 

be helpful in finding particular limits. 

 

The next example involves the absolute value function: 

 

                   
The graph of f is shown in figure 3 below: 

                                                 
                                                               Figure 3: f (x) = ∣ x ∣ 

Let analyze a limit of 

                                        and explore the behavior of 

h(x) for x near, but not equal, to 0. We have to find lim
𝑥→0

ℎ(𝑥) if it exists.  

The function h is defined for all real numbers except 0     

For example, 

                              
Note that if x is any negative number, then h(x) = -1if x < 0, then the numerator ∣ x ∣ is positive but the 

denominator x is negative, so 

                                                    
If x is any positive number, then h(x)= 1 (if x > 0, then the numerator∣ x ∣ is equal 

to the denominator x, 
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 Figure 4 illustrates the behavior of h(x) for x near 0: 

                                              
                                            Figure 4: h(x)= ∣ x ∣/x 

 

Note that the absence of a solid dot on the vertical axis indicates that h is not defined when x = 0.When 

x is near 0 (on either side of 0), is h(x) near one specific number? The answer is “No,”                             

because h(x) is -1 for x < 0 and 1 for x >0. Consequently, we say that 

                                                           
Neither h(x) nor the limit of h(x) exists at x = 0. However, the limit from the left and the limit from the 

right both exist at 0, but they are not equal. 

 

Matched Problem: 

           Graph 

                         
and find lim

𝑥→2
ℎ(𝑥) if it exists 

                      In previous example, we see that the values of the function h(x) approach two different 

numbers, depending on the direction of approach, and it is natural to refer to these values 

as “the limit from the left” and “the limit from the right.” These experiences suggest that the notion of 

one-sided limits will be very useful in discussing basic limit concepts.If no direction is specified in a 

limit statement, we will always assume that the limit is two-sided or unrestricted. 

                      “ For a (two-sided) limit to exist, the limit from the left and the limit from the right 

must exist and be equal. That is, 

                             
In citated example, since the left- and right-hand limits are not the same: 
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Example 4-Analyzing Limits Graphically: 

  Given the graph of the function f in figure 5, discuss the behavior of f(x) for x near (A) -1, (B) 1, and 

(C) 2.                                                                        

                                              
 

A)Since we have only a graph to work with, we use vertical and horizontal lines to relate the values of x 

and the corresponding values of f(x). For any x near -1on either side of -1, we see that the 

corresponding value of f(x), determined by a horizontal line, is close to 1. 

 

                             
(B) Again, for any x near, but not equal to, 1, the vertical and horizontal lines indicate that the 

corresponding value of f(x)is close to 3. The open dot at (1, 3),together with the absence of a solid dot 

anywhere on the vertical line through x = 1, indicates that f(1) is not defined. 
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(C) The abrupt break in the graph at x = 2 indicates that the behavior of the graph near x = 2 is more 

complicated than in the two preceding cases. If x is close to 2 on the left side of 2, the corresponding 

horizontal line intersects the y axis at a point close to 2. If x is close to 2 on the right side of 2, the 

corresponding horizontal line intersects the y axis at a point close to 5. This is a case where the 

one-sided limits are different. 

                           
                In Example 4B, note that lim

𝑥→1
𝑓(𝑥) exists even though f is not defined at x = 1 and the graph 

has a hole at x = 1. In general, the value of a function at x = c has no effect on the limit of the function 

as x approaches c.   

 

VII.3-AN ALGEBRAIC APPROACH OF LIMITS  

    

                Graphs are very useful tools for investigating limits, especially if something unusual happens 

at the point in question. However, many of the limits encountered in calculus are routine and can be 

evaluated quickly with a little algebraic simplification, some intuition, and basic properties of limits. 

The following list of properties of limits forms the basis for this approach: 

 
Let f and g be two functions, and assume that 

                                                                       
where L and M are real numbers (both limits exist). Then 
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         Each property is also valid if x →c is replaced everywhere by x→ c- or replaced everywhere by          

x →c+.     

EXAMPLE 5- USING LIMIT PROPERTIES 
 

                             Find  𝐥𝐢𝐦
𝒙→𝟑

(𝒙2-4x) 

Solution 

 

So, omitting the steps in the dashed boxes, 

                                                   

If f(x) =x2-4x and c is any real number, then, just as in example 5 

                         
So the limit can be found easily by evaluating the function f at c. This simple method for finding limits is 

very useful, because there are many functions that satisfy the property. This simple method for finding 

limits is very useful, because there are many functions that satisfy the property 

                                                                 
Any polynomial function 

                                        
 satisfies that property for any real number c. Also, any rational function 

                                                          
where n(x) and d(x) are polynomials, satisfies the previous property where d(c)≠ 0 and c is a real 

number and we will have: 

                
 

EXAMPLE 6- EVALUATING LIMITS 

 

Find each limit. 

 
Solution: 
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Matched Problem: Find each limit. 

 
Example 7: Evaluating Limits 

                   Let 

                                 
Find: 

     
Solution: 

                     
(C) Since the one-sided limits are not equal, lim

𝑥→2
𝑓(𝑥) does not exist. 

(D) Because the definition of f does not assign a value to f for x = 2, only for x <2 and x >2, f(2)does 

not exist. 

Matched Problem: 
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CHAPTER VIII: INTRODUCTION TO DIFFERENTIATION 

 

VIII.1: TANGENT TO A CURVE 

 

             Consider the graph of a function y = f(x). Suppose that P (x0, y0) is a point on the curve y = f(x). 

Consider now another point Q (x1, y1) on the curve close to the point P (x0, y0). We draw the line joining 

the points P(x0, y0) and Q(x1, y1), and obtain the picture below. 

 

 
Clearly the slope of this line is equal to: 

                                                                                                                                      
Now let us keep the point P(x0,y0) fixed, and move the point Q(x1,y1) along the curve towards the point 

P. Eventually the line PQ becomes the tangent to the curve y = f(x) at the point P(x0,y0), as shown in the 

picture below. 

 

We are interested in the slope of this tangent line. Its value is called the derivative of the function y = 

f(x) at the point x = x0, and denoted by 

                                                 



 

74 
 

In this case, we say that the function y = f(x) is differentiable at the point x = x0. 

Remark. Sometimes, when we move the point Q (x1, y1) along the curve y = f(x) towards the point 

P(x0,y0), the line PQ does not become the tangent to the curve y = f(x) at the point P(x0,y0). In this case, 
we say that the function y = f(x) is not differentiable at the point x = x0. An example of such a situation is 
given in the picture below. 

                                      

Note that the curve y = f(x) makes an abrupt turn at the point P(x0,y0). 

Example 1: Consider the graph of the function y = f(x) = x2. 

                         

Here the slope of the line joining the points P(x0,y0) and Q(x1,y1) is equal to 

. 

  

It follows that if we move the point Q(x1,y1) along the curve towards the point P(x0,y0), then the slope of 

this line will eventually be equal to  x0 + x0 = 2x0 .Hence for the function y = f(x) = x2, we have                             

                                               . 

P ( x 0 , y 0 ) 

x 

y y  =  f ( x ) 
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In particular, the tangent to the curve at the point (1 1) has slope 2 and so has equation y = 2x − 1, whereas 

the tangent to the curve at the point (−2,4) has slope −4 and so has equation y = −4x − 4. 

 y 

 

Example.2: Consider the graph of the function y = f(x) = x3. Here the slope of the line joining the 

points P(x0,y0) and Q(x1,y1) is equal to: 

. 

It follows that if we move the point Q(x1,y1) along the curve towards the point P(x0,y0), then the slope of 

this line will eventually be equal to:  

                                                           

. Hence for the function y = f(x) = x3, we have: 

                                                                 . 

In particular, the tangent to the curve at the point (0,0) has slope 0 and so has equation y = 0, whereas 

the tangent to the curve at the point (2,8) has slope 12 and so has equation y = 12x − 16. 

Example 3: Consider the graph of the function y = f(x) = x. Here the slope of the line joining the points 

P(x0,y0) and Q(x1,y1) is equal to 

. 

It follows that if we move the point Q(x1,y1) along the curve towards the point P(x0,y0), then the slope of 

this line will remain equal to 1. Hence for the function y = f(x) = x, we have 
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Example 4:Consider the graph of the function y = f(x) = x1/2, defined for all real numbers x ≥ 0. Suppose 

that x0 > 0 and x1 > 0. Then the slope of the line joining the points P(x0,y0) and Q(x1,y1) is equal to 

. 

It follows that if we move the point Q(x1,y1) along the curve towards the point P(x0,y0), then the slope of 

this line will eventually be equal to 

. 

Hence for the function y = f(x) = x1/2, we have         

                                                                          . 

The above four examples are special cases of the following result. 

VIII.2: DERIVATIVES OF POWERS.  

Suppose that n is a fixed non-zero real number. Then for the function y = f(x) = xn we have  

                                                         

for every real number x for which xn−1 is defined. Here and henceforth, we shall slightly abuse our notation 

and refer to f ‘(x) as the derivative of the function y = f(x), and write 

                                                                                  
Example :5    For the function y = f(x) = x1/4, we have 

                                                      

for every positive real number x. The rule concerning derivatives of powers does not apply in the case n 

= 0.  

Suppose that f(x) = c, where c is a fixed real number. Then f’’(x) = 0 for every real number x. 

 VIII.3:ARITHMETIC OF DERIVATIVES 

Very often, we need to find the derivatives of complicated functions which are constant multiples, sums, 

products and/or quotients of much simpler functions. To achieve this, we can make use of our knowledge 

concerning the derivatives of these simpler functions. We have four extremely useful results. 
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VIII.3.1: CONSTANT MULTIPLE RULE.  

 

Suppose that m(x) = cf(x), where c is a fixed real number. Then m’(x)=c f’’(x) for every real number x for 

which f’’(x) exists. 

 

VIII.3.2: SUM RULE. 

Suppose that s(x) = f(x) + g(x) and d(x) = f(x) − g(x). Then 

                                          and  

for every real number x for which f’(x) and g’(x) exist. 

Example2:Consider the function h(x) = 5x2 + 3x5. We can write:       h(x) = f(x) + g(x), 

where f(x) = 5x2 and g(x) = 3x5. It follows from the sum rule that   h’(x) = f’(x) + g’(x). 

Next, the function f(x) = 5x2 is a constant (5) multiple of the function x2, and so it follows from the 

constant multiple rule and the rule on the derivatives of powers that 

                                                              

Similarly, the function g(x) = 3x5 is a constant (3) multiple of the function x5, and so it follows from the 

constant multiple rule and the rule on the derivatives of powers that 

. 

Hence     h’(x) = 10x + 15x4. 

                                                    . 

Example 3: Consider the function h(x) = (3x)4− (2x)6. We can write: h(x) = f(x) − g(x), 

where f(x) = 81x4 and g(x) = 64x6. It follows from the sum rule that 

                                                                                                      . 

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain  

                f’’(x)= 324x3  and   g(x)=384x5 .   Hence   h’(x) = 324x3 - 384x5   

The sum rule can be extended to the sum or difference of more than two functions in the natural way. 

We illustrate the technique in the following the examples.  

Example 4:. Consider the function h(x) = (x2 + 2x)2. Then h(x) = x4 + 4x3 + 4x2, and so we can write                                              

h(x) = f(x) + g(x) + k(x),where f(x) = x4, g(x) = 4x3 and k(x) = 4x2. It follows from the sum rule that 

. 

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain   
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EXAMPLE 5: Consider the function 

                                                                                             

We can write: h(x) = f(x) + g(x), where f(x) = 3x−1 and g(x) = 2x. It follows from the sum rule that 

. 

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain 

                                   

EXAMPLE 6: Consider the function 

. 

We can write h(x) = f(x) − g(x) + k(x),where f(x) = 6x5/2, g(x) = 4x−1/2   

and k(x) = 3x1/3. It follows from the sum rule that                                                                                                    

                                                        . 
Applying the constant multiple rule and the rule on the derivatives of powers, we obtain            

,  and    . Hence: 

                                                                                                      . 

Example 7: Consider the function :                                                                                                                 

                                                           .  

We can write 

                              h(x) = f(x) + g(x), Where 

 and   . It follows from the sum rule that 

. 

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain 

                           and    . 

Hence: 

. 

VIII.3.3: PRODUCT RULE.  

  
Suppose that p(x) = f(x)g(x). Then      for every real number x for which    
f’(x) and g’(x) exist. 
 
Example 9: Consider the function h(x) = (x3− x5)(x2 + x4). We can write :h(x) = f(x)g(x), 

where f(x) = x3− x5 and g(x) = x2 + x4. It follows from the product rule that 

. 

Applying the sum rule and the rule on the derivatives of powers, we obtain  and 
.  Hence: 

                                           . 
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Alternatively, we observe that h(x) = (x3−x5)(x2 +x4) = x5−x9.Applying the sum rule and the rule on the 
derivatives of powers, we obtain     

                                                         
as before. 
The product rule can be extended to the product of more than two functions. The extension is at first 
sight somewhat less obvious than in the case of the sum rule. However, with a bit of care, it is in fact 
rather straightforward. 

Example 10: Consider the function h(x) = (x2 + 4x)(2x + 1)(6 − 2x2). We can write 

h(x) = f(x)r(x), 

where f(x) = x2 + 4x and r(x) = (2x + 1)(6 − 2x2). It follows from the product rule that 

. 

We can now write 
r(x) = g(x)k(x), 

where g(x) = 2x + 1 and k(x) = 6 − 2x2. It follows from the product rule that 

. 

Hence h(x) = f(x)g(x)k(x), and 

. 

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and constants, 
we obtain: 

                            ) = 2 and     .  Hence: 

. 

Remark.The interested reader is challenged to show that if p(x) = f(x)g(x)k(x)t(x), then 

. 

 
VIII.3.4: QUOTIENT RULE.  
 
Suppose that q(x) = f(x)/g(x). Then: 

                                                                    
for every real number x for which f ’(x) and g’(x) exist, and for which  g(x)≠ 𝟎 

Example 11: Consider the function 

                                    . 

We can write:           

                                         

where f(x) = x2− 1 and g(x) = x3 + 2x. It follows from the quotient rule that 
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                                       . 

Applying the sum rule, the constant multiple rule and the rules on the derivatives of 

powers and constants, we obtain: 

                               and   + 2.  

Hence: 

 
Example 12: Consider the function: 

                                                    
where f(x) = 4x2 + 1 and g(x) = 3x. It follows from the quotient rule that 

                                                 

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and constants, 

we obtain f’(x) = 8x and g’(x) = 3. Hence: 

                                        

 

VIII.4: DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS 

Consider the curve y = f(x) = sinx. Suppose that P(x,f(x)) is a point on this curve. Consider another point 

Q(x+h,f(x+h)), where h≠ 0, which also lies on this curve. Clearly the slope of the line joining the two 

points P and Q is equal to: 

. 

Consider the curve y = g(x) = cosx. Suppose that R(x,g(x)) is a point on this curve. Consider another 

point S(x+h,g(x+h)), where h≠ 0, which also lies on this curve. Clearly the slope of the line joining the 

two points R and S is equal to 

     . 

We now move the point Q along the curve y = f(x) = sinx towards the point P, and move the point S 

along the curve y = g(x) = cos x towards the point R. 
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We have established the first two parts of the result below. 

 

VIII.5: DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS. 
 
*Suppose that f(x) = sinx and g(x) = cosx and t(x) = tanx.                                              

T(x) = tanx=
𝒔𝒊𝒏𝒙

𝒄𝒐𝒔𝒙
= f(x)/g(x). It follows from the quotient rule that 

 

                                                          →(tang x)’=sec2x 

*Suppose that t(x) = cotx. Then t(x) = g(x)/f(x)= 
𝒄𝒐𝒔 𝒙

𝒔𝒊𝒏𝒙
. It follows from the quotient rule that: 

                     

→(cotx)’=−csc2 x. 

*Suppose that t(x) = sec x. Then t(x) = c(x)/g(x), where c(x) = 1.It follows from the quotient rule 
that 

                             

                                                     →(sec x)’= tan x sec x 

*Suppose that t(x) = cscx. Then t(x) = c(x)/f(x).It follows from the quotient rule that 

  

                                                    →( csc x)’= −cot x csc x       

Example 13: Consider the function h(x) = (x3 − 2) (sin x + cos x). We can write 

          h(x) = f(x)g(x), where f(x) = x3 − 2 and g(x) = sin x + cos x. It follows that 

                                            h’(x) = f’(x)g(x) + f(x)g’(x). 
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Observe next that f’(x) = 3x2 and g’(x) = cos x − sin x.                                                                                       

                                                                     Hence h’(x) = 3x2(sin x + cos x) + (x3 − 2)(cos x − sin x). 

Example 14:Consider the function   𝒉(𝒙) =
𝑺𝒊𝒏 𝒙

𝒙
 

We can write   h(x) = f(x) /g(x), where f(x) = sin x and g(x) = x. It follows that 

                                                                                        

Observe next that f’(x) = cos x and g’(x) = 1.  Hence 

                                                                                          
Example 15: Consider the function h(x) = sin2 x. We can write: h(x) = f(x)g(x), where                      

f(x) = g(x) = sin x. It follows that: h’(x) = f’(x)g(x) + f(x)g’(x). Observe next that f’(x) = g’(x) = cos x.           

                           Hence h’(x) = cos x sin x + sin x cos x = 2 sin x cos x. 

Example 16: Consider the function y = sin 2x. We can write h(x) = 2f(x)g(x), where f(x) = sin x and g(x) = cos x. 

It follows that h’(x) = 2(f’(x)g(x) + f(x)g’(x)). Observe next that f’(x) = cos x and g’(x) = −sin x. Hence h’(x) = 2(cos2 x − sin2 x) = 

2 cos 2x. 
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                                                 ACTIVITES FOR CHAPTER VIII 

 

      ACTIVITY VIII.1: For each of the following functions f(x), write down the derivative f‘(x) as a function 

of x, and find the slope of the tangent at the point P(1,f(1))  

                                                                              

                                  

       ACTIVITY VIII.2: Find the derivative of each of the following functions, using the rules concerning 

the derivatives of powers, constants and sums:         

 

      ACTIVITY VIII.3: Find the derivative of each of the following functions, using the rules concerning the 

derivatives of powers, constants, sums and products as appropriate: 

 

 
 

       ACTIVITY VIII.4: Find the derivative of each of the following functions, using the rules concerning 

the derivatives of powers, constants, sums, products and quotients as appropriate: 
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CHAPTER IX: APPLICATIONS OF DIFFERENTIATION 

 
IX.1: SECOND DERIVATIVES 

 

                 Recall that for a function y = f(x), the derivative f’(x) represents the slope of the tangent. It is 

easy to see from a picture that if the derivative f’(x) > 0, then the function f(x) is increasing; in other 

words,f(x) increases in value as x increases. On the other hand, if the derivative f’(x) < 0, then the 

function f(x) is decreasing; in other words, f(x) decreases in value as x increases. We are interested in 

the case when the derivative f’(x) = 0. Values x = x0 such that f’(x0) = 0 are called stationary points. 

 

                  Let us introduce the second derivative f ‘’(x) of the function f(x). This is defined to be the 

derivative of the derivative f’(x). With the same reasoning as before but applied to the function f’(x) 

instead of the function f(x), we conclude that if the second derivative f’’(x) > 0, then the derivative f’(x) is 

increasing. Similarly, if the second derivative f”(x) < 0, then the derivative f’(x) is decreasing. 

                    

                  Suppose that f(x0) = 0 and f’(x0) < 0. The condition f”(x0) < 0 tells us that the derivative 

f’(x) is decreasing near the point x = x0. Since f’(x0) = 0, this suggests that f(x) > 0 when x is a little 

smaller than x0, and that f’(x) < 0 when x is a little greater than x0, as indicated in the picture 

below. 

                             
In this case, we say that the function has a local maximum at the point x = x0. This means that if we 

restrict our attention to real values x near enough to the point x = x0, then f(x) ≤ f(x0) for all such 

real values x. 

 

LOCAL MAXIMUM. Suppose that f’(x0) = 0 and f’(x0) < 0. Then the function f(x) has a local 

maximum at the point x = x0. 

 

                    Suppose next that f’(x0) = 0 and f ’’(x0) > 0. The condition f”(x0) > 0 tells us that the 

derivative f’(x) is increasing near the point x = x0. Since f’(x0) = 0, this suggests that f”(x) < 0 when x is a 

little smaller than x0, and that f’(x) > 0 when x is a little greater than x0, as indicated in the picture 

below. In this case, we say that the function has a local minimum at the point x = x0. This means that if 

we restrict our attention to real values x near enough to the point x = x0, then f(x) ≥ f(x0) for all such 

real values x. 
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LOCAL MINIMUM. Suppose that f’(x0) = 0 and f”(x0) > 0. Then the function f(x) has a local 

minimum at the point x = x0. 

 

Remark. These stationary points are called local maxima or local minima because such points may 

not maximize or minimize the functions in question. Consider the picture below, with a local maximum 

at x = x1 and a local minimum at x = x2. 

                            
                   We also say that a point x = x0 is a point of inflection if f”(x0) = 0, irrespective of whether 

f’(x0) = 0 or not. A simple way of visualizing the graph of a function at a point of inflection is to imagine 

that one is steering a car along the curve. A point of inflection then corresponds to the place on the 

curve where the steering wheel of the car is momentarily straight while being turned from a little left to a 

little right, or while being turned from a little right to a little left.  

 

Example 1: Consider the function f(x) = cos x. Since f’(x) = −sin x = 0 whenever x = kπ, where k ∈ Z, it 

follows that the function f(x) = cos x has a stationary point at x = kπ for every k ∈ Z. Next, note that    

f”(x) = −cos x. If k is even, then f” (kπ) = −1, so that f(x) has a local maximum at x = kπ. If k is odd, then 

f” (kπ) = 1, so that f(x) has a local minimum at x = k:.see the graph below: 

                
 

Example 2: Consider the function f(x) = 3x4 + 4x3 − 12x2 + 5. Since 

f’(x) = 12x3 + 12x2 − 24x = 12x (x2 + x − 2) = 12x (x − 1) (x + 2), it follows that the function f(x) has 

stationary points at x = 0, x = 1 and x = −2. On the other hand, we have f”(x) = 36x2 +24x−24. Since 

f”(0) = −24, f”(1) = 36 and f”(−2) = 72, it follows that f(x) has a local maximum at x = 0 and local minima 

at x = 1 and x = −2. 

 

Example 3: Consider the function f(x) = x3 − 3x2 + 2. Since f’(x) = 3x2 − 6x = 3x(x − 2), it 

follows that the function f(x) has stationary points at x = 0 and x = 2. On the other hand, we have 
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f”(x) = 6x − 6. Since f”(0) = −6 and f”(2) = 6, it follows that f(x) has a local maximum at x = 0 

and a local minimum at x = 2. Observe also that there is a point of inflection at x = 1. 

Example 4: Consider the function f(x) = x4 − 2x2 + 7. Since 

f”(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x − 1)(x + 1),it follows that the function f(x) has stationary points at x = 

0, x = 1 and x = −1. On the other hand, we have f”(x) = 12x2 −4. Since f”(0) = −4, f”(1) = 8 and f”(−1) = 

8, it follows that f(x) has a local maximum at x = 0 and local minima at x = 1 and x = −1. Note also that  

f(x) = 0  if x = ±√1/3 ,so there are points of inflection at x = ±√1/3 

 
Example 5: Consider the function f(x) = sin x − cos2 x, restricted to the interval 0 ≤ x ≤ 2π. 
It is easy to see that    f”(x) = cos x + 2 cos x sin x = (1 + 2sinx) cos x. We therefore have stationary 
points when cos x = 0 or sin x = −1/2. There are four stationary points in the interval 0 ≤ x ≤ 2π, namely 
 

                              
Next, note that we can write f’(x) = cos x + sin 2x, so that f__(x) = 2 cos 2x − sin x. It is easy to check 
that 

  
Hence f(x) has local maxima at x = π/2 and x = 3π/2, and local minima at x = 7π/6 and x = 11π/6. 

 

IX.2: APPLICATIONS TO PROBLEM SOLVING. 

 

In this section, we discuss how we can apply ideas in differentiation to solve various problems. We shall 

illustrate the techniques by discussing a few examples. Central to all of these is the crucial step where 

we set up the problems mathematically and in a suitable way. 

 

Example 1: We wish to find positive real numbers x and y such that x+y = 6 and the quantity 

xy2 is as large as possible. In view of the restriction x + y = 6, the quantity xy2 = x(6 − x)2. We can 

therefore try to find a real number x which makes the quantity x(6 − x)2 as large as possible. The idea 

here is to consider the function f(x) = x(6 − x)2 and hope to find a local maximum. We can write 

f(x) = 36x−12x2 +x3, and so f’(x) = 36−24x+3x2 = 3(x2 −8x+12) = 3(x−2)(x−6). Hence x = 2 

and x = 6 are stationary points. Next, note that f’(x) = 6x − 24. Hence f”(2) = −12 and f”(6) = 12. 

It follows that the function f(x) has a local maximum at the point x = 2. Then y = 6 − x = 4, with 

f(2) = 32. This choice of x and y makes xy2 as large as possible, with value f(2) = 32. 

 

Example 2: We have 20 metres of fencing material, and wish to find the largest rectangular area 

that we can enclose. Suppose that the rectangular area has sides x and y in metres. Then the area is 

equal to xy, while the perimeter is equal to 2x+2y. Hence we wish to maximize the quantity xy subject 

to the restriction 2x+2y = 20. Under the restriction 2x+2y = 20, the quantity xy = x(10−x). We can 

therefore try to find a real number x which makes the quantity x(10 − x) as large as possible. Consider 

the function f(x) = x(10 − x) = 10x − x2. Then f’(x) = 10 − 2x, and so x = 5 is a stationary point. 

Since f”(x) = −2, the point x = 5 is a local maximum. Then y = 10 − x = 5, with f(5) = 25. This 

choice of x and y makes xy as large as possible, with area 25 square metres. 

      

Example 3: A manufacturer wishes to maximize the volume of cylindrical metal cans made out 

of a fixed quantity of metal. To understand this problem, suppose that a typical can has radius r and 
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height h as shown in the picture below: 

 

                                                        
Then the total surface area is equal to 2πr2 + 2πrh = S, where S is fixed, so that 

                                                    
On the other hand, the volume of such a can is equal to V = πr2h. Under the restriction (1), we ha  

                                                     

Consider now the function      

                                            

Differentiating, we have 

                                                      

 

so that r =√𝑆/6𝜋  is the only stationary point, since negative values of r are meaningless. 

Furthermore,we have V”(r) = −6πr, and so this stationary point is a local maximum. For this value of r, 
we have 

 
 
This means that the most economical shape of a cylindrical can is when the height is twice the radius.



 

 

ACTIVITES FOR CHAPTER IX 

          ACTIVITY IX.1: For each of the following functions, find all of the stationary points. For each such 

stationary point, determine whether it is a local maximum, a local minimum or another type of stationary 

point: 

 

 
 

         ACTIVITY IX.2: A bullet is shot upwards at time t = 0 from the top of a building 176 metres tall, 

with an initial speed of 160 metres per second. The height of the bullet is given by h(t) = −16t2 

+160t+176 after t seconds. At what time is the bullet at maximum height above the ground? What is this 

height? 

 

          ACTIVITY IX.3: A rectangular beam, of width w and depth d, is cut from a circular log of diameter 

a = 25 centimetres. The beam has strength S given by S = 2wd2. Find the dimension that will give the 

strongest beam. 

                                       [Hint: Use d2 + w2 = a2 to relate the variables d and w.] 
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CHAPTER X: INTRODUCTION TO INTEGRATION 

 
X.1. ANTIDERIVATIVES 

 

In this chapter, we discuss the inverse process of differentiation. In other words, given a function f(x), 
we wish to find a function F(x) such that F’(x) = f(x). Any such function F(x) is called an antiderivative, 

or indefinite integral, of the function f(x), and we write ∶ 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 

 

A first observation is that the antiderivative, if it exists, is not unique. Suppose that the function 

F(x) is an antiderivative of the function f(x), so that F’(x) = f(x). Let G(x) = F(x) + C, where C 

is any fixed real number. Then it is easy to see that G’(x) = F’(x) = f(x), so that G(x) is also an 

antiderivative of f(x). A second observation, somewhat less obvious, is that for any given function f(x), 

any two distinct antiderivatives of f(x) must differ only by a constant. In other words, if F(x) and G(x) 

are both antiderivatives of f(x), then F(x) − G(x) is a constant. In this chapter, we shall denote any 

such constant by C, with or without subscripts.An immediate consequence of this second observation is 

the following simple result related to the derivatives of constants already previously seen. 

 

ANTIDERIVATIVES OF ZERO: 
 

We have     ∫ 0 𝑑𝑥=C   

 
In other words, the antiderivatives of the zero function are precisely all the constant functions. 

Indeed, many antiderivatives can be obtained simply by referring to various rules concerning 

derivatives. We list here a number of such results. The first of these is related to the already seen 

constant multiple rule for differentiation. 

 

CONSTANT MULTIPLE RULE. 

 

Suppose that a function f(x) has antiderivatives. Then for any fixed real number c, we have 

                                                ∫ 𝑐𝑓(𝑥) 𝑑𝑥=𝑐 ∫ 𝑓(𝑥) 𝑑𝑥 

ANTIDERIVATIVES OF POWERS. 

a)Suppose that n is a fixed real number such that n ≠−1. Then 

                               ∫𝑥𝑛dx=
1

𝑛+1
𝑥𝑛+1+ c 

b) We have: 

                               ∫𝑥−1dx=log |x| + C. 

Proof. Part (a) is a consequence of the rule concerning derivatives of powers already seen. If x > 0, 

then part (b) is a consequence of the rule concerning the derivative of the logarithmic function. If x < 0, 
we can write |x| = u, where u = −x. It then follows from the Chain rule that    
               

                                         
𝑑

𝑑𝑥
log(|𝑥|) =

𝑑𝑢

𝑑𝑥
𝑥

𝑑𝑥

𝑑𝑢
𝑙𝑜𝑔(𝑢) = −

1

𝑢
=

1

𝑥
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SUM RULE: 
 

Suppose that functions f(x) and g(x) have antiderivatives. Then 

                ∫(𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥) 𝑑𝑥 

ANTIDERIVATIVES OF TRIGONOMETRIC FUNCTIONS: 

 

 

                 Proof. Parts (a)–(c) follow immediately from the rules concerning derivatives of the already 

seen trigonometric functions.  Part (d) follows from also the already given examples.  

Corresponding to the rule concerning the derivative of the exponential function, we have the following. 
 

ANTIDERIVATIVES OF THE EXPONENTIAL FUNCTION: 

We have  

                                        ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥+ c 

Example 1: Using the sum rule, the constant multiple rule and the rule concerning antiderivatives 
of powers, we have   

 

Example 2: Using the sum rule and the rules concerning antiderivatives of powers and of trigonometric 
functions, we have 

                      
   Example 3: We have             

  
Example 4: 
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Example 5: To find 

                                                
note first of all that 

 
It follows that 

 
 
X.2: INTEGRATION BY SUBSTITUTION 
 

We now discuss how we can use the chain rule in differentiation to help solve problems in integration. 

This technique is usually called integration by substitution. As we shall not prove any result here, our 

discussion will be only heuristic. We emphasize that the technique does not always work. First of all, we 

have little or no knowledge of the antiderivatives of many functions. Secondly, there is no simple routine 

that we can describe to help us find a suitable substitution even in the cases where the technique 

works. On the other hand, when the technique does work, there may well be more than one suitable 

substitution! 

 

 Version 1:If we make a substitution x = g(u), then dx = g’(u) du, and 

                 
 Example 1: Consider the indefinite integral 

                                            
  If we make a substitution x = sin u, then dx = cos u du, and   

   
On the other hand, if we make a substitution x = cos v, then dx = −sin v dv, and 

 
Example 2: Consider the indefinite integral 

                                                                           
 

If we make a substitution x = tan u, then dx = sec2 u du, and 
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On the other hand, if we make a substitution x = cot v, then dx = −csc2 v dv, and 

 
Example 3: Consider the indefinite integral 

                                                                      
If we make a substitution x = u2 − 1, then dx = 2u du, and 

 
On the other hand, if we make a substitution x = v − 1, then dx = dv, and 

 
We can confirm that the indefinite integral is correct by checking that 

                            
 Version 2: Suppose that a function f(x) can be written in the form f(x) = g(h(x))h’(x). If we make 

a substitution u = h(x), then du = h’(x) dx, and 

                                 
In Version 1, the variable x is initially written as a function of the new variable u, whereas in Version 2, 

the new variable u is written as a function of x. The difference, however, is minimal, as the substitution 

x = g(u) in Version 1 has to be invertible to enable us to return from the new variable u to the original 

variable x at the end of the process. 

 

Example 4: Consider the indefinite integral 

                                                                              
Note first of all that the derivative of the function x2 + 3 is equal to 2x, so it is convenient to make the 

substitution u = x2 + 3. Then du = 2x dx, and 
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Example 5: Consider the indefinite integral 

                                                                            
Note first of all that the derivative of the function log x is equal to 1/x, so it is convenient to make the 

substitution u = log x. Then du = (1/x) dx, and 

       
Example 6: Consider the indefinite integral 

                                                                     
Note first of all that the derivative of the function x3 is equal to 3x2, so it is convenient to make the 

substitution u = x3. Then du = 3x2 dx, and 

          
A somewhat more complicated alternative is to note that the derivative of the function ex3 is equal to 

3x2 𝑒𝐱𝟑 so it is convenient to make the substitution v =𝑒𝐱𝟑. Then dv = 3x2ex3 dx, and 

        
Example 7: Consider the indefinite integral 

                                                                      
Note first of all that the derivative of the function tan x is equal to sec2 x, so it is convenient to make 

the substitution u = tan x. Then du = sec2 x dx, and 

             

Occasionally, the possibility of substitution may not be immediately obvious, and a certain amount 

of trial and error does occur. The fact that one substitution does not appear to work does not mean 

that the method fails. It may very well be the case that we have used a bad substitution. Or perhaps 

we may slightly modify the problem first. We illustrate this point by looking at the two  following 

examples. 

Example 8: Consider the indefinite integral 

                                                                         

Here it does not appear that any substitution will work. However, if we write     

           

then we observe that the derivative of the function cos x is equal to −sin x, so it is convenient to make 



 
 
 

94 
 

the substitution u = cos x. Then du = −sin x dx, and 

     
Example 9: The indefinite integral 

                                                         
is rather daunting at first sight, but we have enough technique to study it. Note first of all that 

 
It follows that   

      
To study the first integral on the right hand side of (2), we can make a substitution x = 2 tan u. Then 

dx = 2 sec2 u du, and 

 
To study the second integral on the right hand side of (2), we note that the derivative of the function 

4 + x2 is equal to 2x. If we make a substitution v = 4+x2, then dv = 2x dx, and                      

            
The third integral on the right hand side of (2) is easy to evaluate. We have    

                                           
Substituting (3)–(5) into (2) and writing C = C1 + C2 + C3, we obtain 

 
It may be worth checking that 

 
 

 

X.3: DEFINITE INTEGRALS 

 

Suppose that f(x) is a real valued function, defined on an interval [A,B] = {x ∈ R : A ≤ x ≤ B}. 

We shall suppose also that f(x) has an antiderivative F(x) for every x ∈ [A,B].Consider that f(x) ≥ 0 for 

every x ∈ [A,B]. 

 By the definite integral 

                                                           

(1) 

(2) 

(3) 

(4) 

(5) 
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we mean the area below the curve y = f(x) and above the horizontal axis y = 0, bounded between the 

vertical lines x = A and x = B, as shown in the picture below. 

                                 
In general, we take the area between the curve y = f(x) and the horizontal axis y = 0, bounded 

between the vertical lines x = A and x = B, with the convention that the area below the horizontal axis 

y = 0 is taken to be negative, as shown in the picture below. 

 

                              
Example 1: If we examine the graph of the trigonometric functions sinus x(a) and cosinus x(b) below: 

             
 

 
then it is easy to see that 
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In each case, it is easy to see that the area in question above the horizontal axis y = 0 is equal to the 

area in question below this axis. 

 

Example 2:It is easy to see that the area between the line y = x and the horizontal axis y = 0, 

bounded between the vertical lines x = 0 and x = 1, is the area of a triangle with base 1 and height 1. 

Hence 

                                            
In many instances, we do not have such geometric information to help us calculate the area in 

question. Instead, we can use the indefinite integral. 

 

X.3.1:FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS.  

Suppose that a function F(x) satisfies F’(x) = f(x) for every x ∈ [A,B]. Then 

                                                                    

A simple consequence of the above is that the constant multiple rule and sum rule for 

indefinite integrals extend to definite integrals. For any fixed real number c, we have 

                                          
We also have 

                      
A further consequence of the Fundamental theorem of integral calculus is a rule concerning splitting up 

an interval [A,B] into two. Suppose that A < A∗ < B. Then 

                                   
Example 3: Returning to Example 1, we have 

                    
Example 4: Returning to Example 2, we have   

                                                      
Example 5: We have 

                                     
Example 6: We have 
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Example 7: We have 

 
Example 8:. Recall Example1: Since 

  
we have 

 
To obtain (6), recall that we can use the substitution x = sin u to show that 

                                   
followed by an inverse substitution u = sin−1 x. Here, we need to make the extra step of substituting the 

values x = 0 and x = 1/2 to the indefinite integral sin−1 x. Observe, however, that with the substitution 

x = sin u, the variable x increases from 0 to 1/2 as the variable u increases from 0 to π/6. But then 

                                
so it appears that we do not need the inverse substitution u = sin−1 x. Perhaps we can directly substitute 

u = 0 and u = π/6 to the indefinite integral u. 

 

X.3.2: DEFINITE INTEGRAL BY SUBSTITUTION – VERSION 1. 

 

 Suppose that a substitution x = g(u) satisfies the following conditions: 

(a) There exist α, β ∈ R such that g(α) = A and g(β) = B. 

(b) The derivative g’(u) > 0 for every u satisfying α < u < β. Then dx = g’(u) du, and 

                       
If condition (b) above is replaced by the condition that the derivative g_(u) < 0 for every u 

satisfying β < u < α, then the same conclusion holds if we adopt the convention that 

                  
 

Example 9: To calculate the definite integral 

                                                              
we can use the substitution x = tan u, so that dx = sec2 u du. Note that tan 0 = 0 and tan(π/4) = 1, 

and that sec2u > 0 whenever 0 < u < π/4. It follows that 

 

(6) 
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Example 10: To calculate the definite integral 

                                                                                   
we can use the substitution u = h(x) = log x, so that du = h’(x) dx, where h’(x) = 1/x > 0 whenever 

2 < x < 4. Note also that h(2) = log 2 and h(4) = log 4. It follows that 

 

 
 

 

X.4: AREAS 

 

We conclude this chapter by describing how we may use definite integrals to evaluate areas. Suppose 

that the boundary of a region on the xy-plane can be described by a top edge y = g(x) and a bottom 

edge y = f(x) bounded between two vertical lines x = A and x = B, as shown in the picture below. 

                                       
Then the area of the region is given by the definite integral 

                             
Example 1: We wish to show that the area of the ellipse 

                                                                  
where a, b ∈ R are positive, is equal to πab. To do this, we may consider the quarter of the ellipse in 

the first quadrant, as shown in the picture below. 
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It follows that the shaded region has area 

                                                                   
We can use the substitution x = g(u) = a sin u. Then g(0) = 0 and g(π/2) = a. Furthermore, we have 

dx = g’(u) du, where g(u) = a cosu > 0 whenever 0 < u < π/2. It follows that 

 
Example 2: We wish to evaluate the area of the triangle with vertices (0, 1), (1, 0) and (3, 2). To 

do this, we split the triangle into two regions as shown in the picture below. 

                                              
The triangle on the left is bounded between the vertical lines x = 0 and x = 1, and the top edge and 

the bottom edge are given respectively by 

                                  
The triangle on the right is bounded between the vertical lines x = 1 and x = 3, and the top edge and 

the bottom edge are given respectively by 

                                  
It follows that the area of the original triangle is given by 

                   
Example 3: We wish to evaluate the area of the quadrilateral with vertices (1, 1), (2, 0), (4, 1) 

and (3, 5). To do this, we split the quadrilateral into three regions as shown in the picture below. 
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The triangle on the left is bounded between the vertical lines x = 1 and x = 2, and the top edge and the 

bottom edge are given respectively by 

                                          
The quadrilateral in the middle is bounded between the vertical lines x = 2 and x = 3, and the top edge 

and the bottom edge are given respectively by 

                                    
The triangle on the right is bounded between the vertical lines x = 3 and x = 4, and the top edge and 

the bottom edge are given respectively by 

                          
It follows that the area of the original quadrilateral is given by 

 
Alternatively, we can transpose the picture above and split the quadrilateral into two regions as shown 

in the picture below: 
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Note that the roles of x and y are now interchanged. The triangle on the left is bounded between the 

vertical lines y = 0 and y = 1, and the top edge and the bottom edge are given respectively by 

                                         
The triangle on the right is bounded between the vertical lines y = 1 and y = 5, and the top edge and 

the bottom edge are given respectively by 

                           
It follows that the area of the original quadrilateral is given by 

 
as before. 
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                                                       ACTIVITIES FOR CHAPTER X 

 

ACTIVITY X.1: Find each of the following indefinite integrals. 

 

a) ∫ √3 dx    ;     b)∫(5𝑥 + 3)𝑑𝑥       ;        𝒄) ∫(2𝑥2 − 3𝑥 + 1)𝑑𝑥;d)  

𝒅) ∫ 𝑥3𝑑𝑥      ;     e) ∫(𝑥 − 2)(𝑥 + 3)𝑑𝑥 ; f ) ∫(1 − 2𝑐𝑜𝑠 𝑥) 𝑑𝑥 

  

ACTIVITY X.2:  Evaluate each of the following indefinite integrals using the given substitution. 

       a)∫
𝑥2

√2+𝑥3 
 dx  ;b) ∫ sin 4𝑥 𝑑𝑥  c)∫

𝑑𝑥

(2𝑥+1)2
   ;𝒅) ∫

𝑥+3

(𝑥2+6𝑥)2)
 dx. 

Note: In a) use the substitution u=𝑥3+2; in b) use the substitution u=4x; in c) use the substitution     

u=2x + 1 and in d) use the  substitution u=𝑥2+ 6x. 

    

ACTIVITY X.3:  Evaluate each of the following indefinite integrals. 

 

a)∫ 𝒄𝒐𝒔 𝟐𝒙𝒅𝒙 ;  𝒃) ∫ √𝒙 − 𝟏𝒅𝒙    ; 𝒄) ∫ 𝒙𝟐𝒄𝒐𝒔(𝟏 − 𝒙𝟑)𝒅𝒙 ;  d) ∫ 𝒙𝒔𝒊𝒏𝒙𝟐𝒅𝒙 

e)∫
𝟏

(𝟏−𝟑𝒙)𝟒
 dx  ; 𝒇) ∫

𝒙

√𝒙𝟐+𝟏
 𝒅𝒙 

 

ACTIVITY X.4:  Evaluate each of the following definite integrals. 

 

 
 

ACTIVITY X.5: 

 Draw the graphs of the line y = x and the parabola y = x2. 

 Find the two points of intersection of the two curves. 

 Use definite integrals to find the area bounded between the two curves. 

ACTIVITY X.6: Find the area of the triangle with vertices (0, 0), (4, 3) and (1, 5). 


