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Engineering Mechanics 

Lectures 1&2 

Review of the three laws of motion and vector algebra  

In this course on Engineering Mechanics, we shall be learning about mechanical interaction between 

bodies. That is we will learn how different bodies apply forces on one another and how they then 

balance to keep each other in equilibrium. That will be done in the first part of the course. So in the first 

part we will be dealing with STATICS. In the second part we then go to the motion of particles and see 

how does the motion of particles get affected when a force is applied on them. We will first deal with 

single particles and will then move on to describe the motion of rigid bodies.  

The basis of all solutions to mechanics problems are the Newton's laws of motion in one form or the 

other. The laws are:  

First law: A body does not change its state of motion unless acted upon by a force. This law is based on 

observations but in addition it also defines an inertial frame . By definition an inertial frame is that in 

which a body does not change its state of motion unless acted upon by a force. For example to a very 

good approximation a frame fixed in a room is an inertial frame for motion of balls/ objects in that 

room. On the other hand if you are sitting in a train that is accelerating, you will see that objects outside 

are changing their speed without any apparent force. Then the motion of objects outside is changing 

without any force. The train is a non-inertial frame.  

Second law: The second law is also part definition and part observation. It gives the force in terms of a 

quantity called the mass and the acceleration of a particle. It says that a force of magnitude F applied on 

a particle gives it an acceleration a proportional to the force. In other words  

                                                            F = ma ,                                                       (1)  

where m is identified as the inertial mass of the body. So if the same force - applied either by a spring 

stretched or compressed to the same length - acting on two different particles produces accelerations a1 

and a2, we can say that  

                                                        m1 a1 = m2 a2  

                                                    or                                                (2)  

Thus by comparing accelerations of a particle and of a standard mass (unit mass) when the same force is 

applied on each one them we get the mass of that particle. Thus gives us the definition of mass. It also 

gives us how to measure the force via the equation F = ma. One Newton (abbreviated as N) of force is 

that providing an acceleration of 1m/s2 to a standard mass of 1 kg. If you want to feel how much in 1 

Newton , hold your palm horizontally and put a hundred gram weight on it; the force that you feel is 

about 1N.  
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Of course you cannot always measure the force applied by accelerating objects. For example if you are 

pushing a wall, how much force you are applying cannot be measured by observing the acceleration of 

the wall because the wall is not moving. However once we have adopted a measure of force, we can 

always measure it by comparing the force applied in some other situation.  

In the first part of the course i.e. Statics we consider only equilibrium situations. We will therefore not 

be looking at F = ma but rather at the balance of different forces applied on a system. In the second part 

- Dynamics - we will be applying F = ma extensively.  

Third Law: Newton's third law states that if a body A applies a force F on body B , then B also applies an 

equal and opposite force on A . (Forces do not cancel such other as they are acting on two different 

objects)  

                                                 

                                                                       Figure 1  

Thus if they start from the position of rest A and B will tend to move in opposite directions. You may ask: 

if A and B are experiencing equal and opposite force, why do they not cancel each other? This is because 

- as stated above - the forces are acting on two different objects. We shall be using this law a lot both in 

static as well as in dynamics.  

After this preliminary introduction to what we will be doing in the coming lectures, we begin with a 

review of vectors because the quantities like force, velocities are all vectors and we should therefore 

know how to work with the vectors. I am sure you have learnt some basic manipulations with vectors in 

your 12th grade so this lectures is essentially to recapitulate on what you have learnt and also introduce 

you to one or two new concepts.  

You have learnt in the past is that vectors are quantity which have both a magnitude and a direction in 

contrast to scalar quantities that are specified by their magnitude only. Thus a quantity like force is a 

vector quantity because when I tell someone that I am applying X- amount of force, by itself it is not 

meaningful unless I also specify in which direction I am applying this force. Similarly when I ask you 

where your friend's house is you can't just tell me that it is some 500 meters far. You will also have to 

tell me that it is 500 meters to the north or 300 meters to the east and four hundred meters to the north 

from here. Without formally realizing it, you are telling me a about a vector quantity. Thus quantities 

like displacement, velocity, acceleration, force are vectors. On the other hand the quantities distance, 

speed and energy are scalar quantities. In the following we discuss the algebra involving vector 

quantities. We begin with a discussion of the equality of vectors.  
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Equality of Vectors: Since a vector is defined by the direction and magnitude, two vectors are equal if 

they have the same magnitude and direction. Thus in figure 2 vector is equal to vector and but not 

equal to vector although all of them have the same magnitude.  

 

Thus we conclude that any two vectors which have the same magnitude and are parallel to each other 

are equal. If they are not parallel then they cannot be equal no matter what their magnitude.  

In physical situations even two equal vectors may produce different effects depending on where they 

are located. For example take the force applied on a disc. If applied on the rim it rotates the wheel at 

a speed different from when it is applied to a point nearer to the center. Thus although it is the same 

force, applied at different points it produces different effects. On the other hand, imagine a thin rope 

wrapped on a wheel and being pulled out horizontally from the top. On the rope no matter where the 

force is applied, the effect is the same. Similarly we may push the wheel by applying the same force at 

thee end of a stick with same result (see figure 3).  
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Thus we observe that a force applied anywhere along its line of applications produces the same effect. 

This is known as transmissibility of force. On the other hand if the same force is applied at a point away 

from its line of application, the effect produced is different. Thus the transmissibility does not mean that 

force can be applied anywhere to produce the same effect but only at any point on its line of 

application.  

   

Adding and subtracting two vectors (Graphical Method): When we add two vectors and by 

graphical method to get , we take vector , put the tail of on the head of .Then we draw a 

vector from the tail of to the head of . That vector represents the resultant (Figure 4). I 

leave it as an exercise for you to show that . In other words, show that vector addition is 

commutative.  
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Let us try to understand that it is indeed meaningful to add two vectors like this. Imagine the following 

situations. Suppose when we hit a ball, we can give it velocity . Now imagine a ball is moving with 

velocity and you hit it an additional velocity . From experience you know that the ball will now start 

moving in a direction different from that of . This final direction is the direction of and the 

magnitude of velocity now is going to be given by the length of .  

Now if we add a vector to itself, it is clear from the graphical method that its magnitude is going to be 

2 times the magnitude of and the direction is going to remain the same as that of . This is 

equivalent to multiplying the vector by 2. Similarly if 3 vectors are added we get the resultant . So 

we have now got the idea of multiplying a vector by a number n . If simply means: add the vector n 

times and this results in giving a vector in the same direction with a magnitude that n times larger.  

You may now ask: can I multiply by a negative number? The answer is yes. Let us see what happens, for 

example, when I multiply a vector by -1. Recall from your school mathematics that multiplying by -1 

changes the number to the other side of the number line. Thus the number -2 is two steps to the left of 

0 whereas the number 2 is two steps to the right. It is exactly the same with vectors. If represents a 

vector to the right, would represent a vector in the direction opposite i.e. to the left. It is now easy 

to understand what does the vector represent? It is a vector of the same magnitude as that of 
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but in the direction opposite to it (Figure 5). Having defined , it is now easy to see what is the vector 

? It is a vector of magnitude in the direction opposite to .  

   

   

                             

Having defined , it is now straightforward to subtract one vector from the other. To subtract a 

vector from , we simply add to that is . Thus to subtract vector from 

graphically, we add and . This is shown in figure 6.  
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Again I leave it as an exercise for you to show that is not equal to but = - 

. We now solve a couple of examples.  

  

Example1: A person walks 300m to the east and 400m to the north to reach his friend's house. What is 

the total displacement of the person, and what is the total distance traveled by him?  

Recall that distance is a scalar quantity. Thus the total distance covered is 700m. Displacement, on the 

other hand, is a vector quantity so to find the net displacement, we add the two vectors to get a 

displacement of 500m at an angle from east to north (Figure 7).  
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Example 2 : Two persons are pushing a box so that the net force on the box is 12N to the east If one of 

the person is applying a force 5N to the north, what is the force applied by the other person.  

Let the force by person applying 5N be denoted by and that by the other person by . We then 

have  

 

so that  

 

Solution for is given graphically in figure 8. The force comes out to be 13N at an angle of 

from east to south.  
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                                                                     Figure 8  

   

Although graphical way is nice to visualize vectors in two dimensions, it becomes difficult to work with it 

in three dimensions, and also when many vectors and many operations with them are involved. So 

vector algebra is best done by representing them in terms of their components along the x, y & z axes in 

space. We now discuss how to this is done.  

To represent vectors in terms of their x,y and z components, let us first introduce the concept of unit 

vector. A unit vector in a particular direction is a vector of magnitude '1' in that direction. So a vector 

in that particular direction can be written as a number times the unit vector . Let us denote the unit 

vector in x-direction as , in y-direction as and in z-direction as . Now any vector can be described 

as a sum of three vectors , and in the directions x, y and z, respectively, in any order (recall 

that order does not matter because vector sum is commutative). Then a vector  

 

Further, using the concept of unit vectors, we can write , where Ax is a number. Similarly 

and . So the vector above can be written as  

 

where Ax, Ay and Az are known as the x, y, & z components of the vector. For example a vector 

would look as shown in figure 9.  
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It is clear from figure 9 that the magnitude of the vector is 

. Now when we add two vector, say and , all we have to do 

is to add their x-components, y-components and the z-components and then combine them to get  

 

Similarly multiplying a vector by a number is same as increasing all its components by the same amount. 

Thus  

=  

How about the multiplying by -1? It just changes the sign of all the components. Putting it all together 

we see that  

 

Having done the addition and subtraction of two vectors, we now want to look at the product of two 

vectors. Let us see what all possible products do we get when we multiply components of two vectors. 

By multiplying all components with one another, we have in all nine numbers shown below:  
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The question is how do we define the product of two vectors from the nine different numbers obtained 

above? We will delay the answer for some time and come back to this question after we establish the 

transformation properties of scalars and vectors. By transformation properties we mean how does a 

scalar quantity or the components of a vector quantity change when we look at them from a different 

(rotated) frame?  

Let us first look at a scalar quantity. As an example, we take the distance traveled by a person. If we say 

that the distance covered by a person in going from one place to another is 1000m in one frame, it 

remains the same irrespective of whether we look at it from the frame (xy ) or in a frame (x' y' ) rotates 

about the z-axis (see figure 10).  

 

Let us now say that a person moves 800 meter along the x-axis and 600 meters along the y-axis so that 

his net displacement is a vector of 1000m in magnitude at an angle of from the x-axis as shown in figure 

10. The total distance traveled by the person is 1400m. Now let us look at the same situation frame 

different frame which has its x' & y' axis rotated about the z- axis. Note that the total distance traveled 

by the person (a scalar quantity) remains the same, 1400m, in both the frames. Further, whereas the 

magnitude of the displacement & its direction in space remains unchanged, its components along the x' 

and y' axis, shown by dashed lines in figure 10, are now different. Thus we conclude the scalar quantity 

remains unchanged when seen from a rotational frame. The component of a given vector are however 

different in the rotated frame, as demonstrated by the example above. Let us now see how the 

components in the original frame and the rotated frame are related.  
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In figure 11, OA is a vector with Ax = OB , Ay = AB, Ax' = OA' and Ay' = AA'. Using the dashed lines drawn in 

the figure, we obtain  

 

Similarly  

 

So we learn that if the same vector is observed from a frame obtained by a rotation about the z-axis by 

an angle θ, its x and y components in the new frame are  
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One can similarly define how components mix when rotation is about the y or the x- axis. Under the y 

axis rotation  

 

And under a rotation about the x-axis  

 

Let us summarize the results obtained above:  

1. Scalar quantity is specified by a number and that number remains the same in two different 

frames rotated with respect to each other.  

2. A vector quantity is specified by its components along the x, y, and the z axes and when seen 

from another frame rotated with respect to a given frame, these components change according 

to the rules derived above.  

We are now ready to get back to defining the product of two vectors. Recall that we had a collection of 

nine quantities:  

 

We are now going to mix these quantities in such a manner that one combination will give a scalar 

quantity whereas the other one will give us a vector quantity. This then defines the scalar and vector 

product of two vectors.  

 Scalar or dot product: Now it is easy to show that is a scalar quantity. To 

show this we calculate this quantity in a rotated frame (rotation could be about the x, y or the z axis) 

that is obtain and show that it is equal to . As an 

example we show it for a frame rotated about the z-axis with respect to the other one. In this case  

 

Therefore we get  
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One can similarly show it for rotations about other axes, which is left as an exercise. This then leads us 

to define the scalar product of two vectors and as  

 

As shown above this value remain unchanged when view from two different frame-one rotated with 

respect to the other. Thus it is a scalar quantity and this product is known as the scalar or dot product 

of two vectors . It is straightforward to see from the definition above that the dot product is 

commutative that is .  

Scalar product of two vectors can also be written in another form involving the magnitudes of these 

vectors and the angle between them as  

 

where are the magnitudes of the two vectors, and θ is the angle between them. Notice 

that although can be negative or positive depending on the angle between them. 

Further, if two non-zero vectors are perpendicular, . From the formula above, it is also 

apparent that if we take vector to be a unit vector, the dot product   represents the 

component of in the direction of . Thus the scalar product between two vectors is the product of 

the magnitude of one vector with the magnitude of the component of the other vector in its direction. 

Try to see it pictorially yourself. We also write the dot products of the unit vectors along the x, y, and 

the z axes. These are and .  

 Vector or cross product: In defining the scalar product above, we have used three out of the nine 

possible products of the components of two vectors. From the six of these that are left i.e. 

, if we define the vector  
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This is known as the vector or cross product of the two vectors. By calling this expression a vector, we 

implicitly mean that its component transform like those of a vector. Let us again take the example of 

looking at the components of this quantity from two frames rotated with respect to each other about 

the z-axis. In that case the x component of the vector product in the rotated frame is  

   

 

and the y component is  

 

Thus we see that the components of the vector product defined above do indeed transform like those 

of a vector. We leave it as an exercise to show that when the other frame is obtained by rotating 

about the x and the y axes also, the transformation of the components is like that of a vector. This is 

known as the vector or the cross product of vectors and . It can also be written in the form of a 

determinant as  

s 

Notice that this is the only contribution that transforms in this manner. For example  

 

does not transform like a vector; I leave it as an exercise for you to show. So this cannot form a vector.  
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Now if we take the dot product of or with , the result is zero as is easy to see. This implies 

that the vector product of two vectors is perpendicular to both of them. As such an alternate 

expression for the vector product of is  

 

where is a unit vector in the direction perpendicular to the plane formed by in such a way 

that if the fingers of the right hand turn from to through the smaller of the angle between them, 

the thumb gives the direction of in direction of . It is also clear from this expression that the vector 

product of two non-zero vectors will vanish if the vectors are parallel i.e. the angle between them is 

zero.  

   

 

The vector product between two vectors is not commutative in that but rather 

.  

  

Geometric interpretation of cross product : The magnitude of the cross-product , which 

is equal to , is the area of a parallelogram formed by vectors . This is shown in 

figure 13.  
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Derivative of a vector: After reviewing the vector algebra, we would now like to introduce you 

to the idea of differentiating a vector quantity. Here we take a vector as depending on one 

parameter, say time t , and evaluate the derivative . This is similar to what we do for a 

regular function. We evaluate the vector at time (t+ Δt) , subtract from it, divide 

the difference by Δt and then take the limit Δ t → 0 . This is shown in figure 14. Thus  

 

   

  

  

  

  

  

  

  

  

  

  

  



18 
 

 

The derivative is easily understood if we think in terms of its derivatives. If we write a vector as  

 

then the derivative of the vector is given as  

 

Notice that only the components are differentiated, because the unit vectors are 

fixed in space and therefore do not change with time. Later when we learn about polar 

coordinates, we will encounter unit vectors which also change with time. In that case when 

taking derivative of a vector, the components as well as the unit vectors both have to be 

differentiated.  

Using the definition above, it is easy to show that in differentiating the product of two vectors, 

the usual chain rule can be applied. This gives  

 

and  

 

   

This pretty much sums up our introduction to vectors. I leave this lecture by giving you three 
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exercises.  

1. Show that and that is the volume of a 

parallelepiped formed by .  

2. Show that can also be written as the determinant  

 

1. Show that if the magnitude of a vector quantity is a fixed, its derivative with 

respect to t will be perpendicular to it. Can you think of an everyday example of this?  

  

  

Lecture 3 

Equilibrium of bodies I  

In the previous lecture, we discussed three laws of motion and reviewed some basic aspects of vector 

algebra. We are now going to apply these to understand equilibrium of bodies. In the static part when 

we say that a body is in equilibrium, what we mean is that the body is not moving at all even though 

there may be forces acting on it. (In general equilibrium means that there is no acceleration i.e., the 

body is moving with constant velocity but in this special case we take this constant to be zero).  

Let us start by observing what all can a force do to a body? One obvious thing it does is to accelerate a 

body. So if we take a point particle P and apply a force on it, it will accelerate. Thus if we want its 

acceleration to be zero, the sum of all forces applied on it must vanish. This is the condition for 

equilibrium of a point particle. So for a point particle the equilibrium condition is  

 

where are the forces applied on the point particle (see figure 13)  
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That is all there is to the equilibrium of a point particle. But in engineering problems we deal not with 

point particles but with extended objects. An example is a beam holding a load as shown in figure 2. The 

beam is equilibrium under its own weight W , the load L and the forces that the supports S1 and S2 apply 

on it.  

 

To consider equilibrium of such extended bodies, we need to see the other effects that a force produces 

on them. In these bodies, in addition to providing acceleration to the body, an applied force has two 

more effects. One it tends to rotate the body and two it deforms the body. Thus a beam put on two 

supports S1 and S2 tends to rotate clockwise about S2 when a force F is applied downwards (figure 3).  
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The strength or ability of a force to rotate the body about a point O is given by the torque 

generated by it. The torque is defined as the vector product of the displacement vector from O to the 

point where the force is applied. Thus  

 

This is also known as the moment of the force. Thus in figure 3 above, the torque about S2 will be given 

by the distance from the support times the force and its direction will be into the plane of the paper. 

From the way that the torque is defined, the torque in a given direction tends to rotate the body on 

which it is applied in the plane perpendicular to the direction of the torque. Further, the direction of 

rotation is obtained by aligning the thumb of one's right hand with the direction of the torque; the 

fingers then show the way that the body tends to rotate (see figure 4). Notice that the torque due to a 

force will vanish if the force is parallel to .  
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We now make a subtle point about the tendency of force to rotate a body. It is that even if the net force 

applied on a body is zero, the torque generated by them may vanish i.e. the forces will not give any 

acceleration to the body but would tend to rotate it. For example if we apply equal and opposite forces 

at two ends of a rod, as shown in figure 5, the net force is zero but the rod still has a tendency to rotate. 

So in considering equilibrium of bodies, we not only have to make sure that the net force is zero but can 

also that the net torque is also zero.  

   

 

A third possibility of the action by a force, which we have ignored above, and which is highly explicit in 

the case of a mass on top of a spring, is that the force also deforms bodies. Thus in the case of a beam 

under a force, the beam may deform in various ways: it may get compressed, it may get elongated or 
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may bend. A load on top of a spring obviously deforms it by a large amount. In the first case we assume 

the deformation to be small and therefore negligible i.e., we assume that the internal forces are so 

strong that they adjust so that there is no deformation by the applied external force. This is known as 

treating the body as a rigid body. In this course, we are going to assume that all bodies are rigid. So the 

third kind of action is not considered at all.  

So now focus strictly on the equilibrium of rigid bodies: As stated, we are going to assume that internal 

forces are so great that the body does not deform. The only conditions for equilibrium in them are:  

(1)  The body should not accelerate/ should not move which, as discussed earlier, is ensured if 

that is the sum of all forces acting on it must be zero no matter at what points on the body they are 

applied. For example consider the beam in figure 2. Let the forces applied by the supports S1 and S2 be F1 

and F2, respectively. Then for equilibrium, it is required that  

 

Assuming the direction towards the top of the page to be y-direction, this translates to  

 

The condition is sufficient to make sure that the net force on the rod is zero. But as we learned earlier, 

and also our everyday experience tells us that even a zero net force can give rise to a turning of the rod. 

So F1 and F2 must be applied at such points that the net torque on the beam is also zero. This is given 

below as the second rule for equilibrium.  

(2)  Summation of moment of forces about any point in the body is zero i.e. , where is 

the torque due to the force   about point O. One may ask at this point whether should be 

taken about many different points or is it sufficient to take it about any one convenient point. The 

answer is that any one convenient point is sufficient because if condition (1) above is satisfied, i.e. net 

force on the body is zero then the torque as is independent of point about which it is taken. We will 

prove it later.  

These two conditions are both necessary and sufficient condition for equilibrium. That is all we need to 

do to achieve equilibrium so in principle solving for equilibrium is quite easy and what we should learn is 

how to apply these condition efficiently in different engineering situations. We are therefore going to 

spend time on these topics individually.  

We start with a few simple examples:  
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Example 1: A person is holding a 100N weight (that is roughly a 10kg mass) by a light weight (negligible 

mass) rod AB. The rod is 1.5m long and weight is hanging at a distance of 1m from the end A, which is on 

a table (see figure 6). How much force should the person apply to hold the weight?  

 

Let the normal reaction of the table on the rod be N and the force by the point be F1. Then the two 

equilibrium conditions give  

 

   

Example 2: As the second illustration we take the example of a lever that you may have used sometime 

or the other. We are trying to lift a 1000N (~100kg mass) weight by putting a light weight but strong rod 

as shown in the figure using the edge of a brick as the fulcrum. The height of the brick is 6cm. The 

question we ask is: what is the value of the force applied in the vertical direction that is needed to lift 

the weight? Assume the brick corner to be rough so that it provides frictional force.  
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(Note: If the brick did not provide friction, the force applied cannot be only in the vertical direction as 

that would not be sufficient to cancel the horizontal component of N). Let us see what happens if the 

brick offered no friction and we applied a force in the vertical direction. The fulcrum applies a force N 

perpendicular to the rod so if we apply only a vertical force, the rod will tend to slip to the left because 

of the component of N in that direction. Try it out on a smooth corner and see that it does happen. 

However, if the friction is there then the rod will not slip. Let us apply the equilibrium conditions in such 

a situation. The balance of forces gives  

 

Let us choose the fulcrum as the point about which we balance the torque. It gives  

Then  

 

The normal force and the frictional force can now be calculated with the other two equations obtained 

above by the force balance equation.  
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In the example above, we have calculated the torques and have also used normal force applied on a 

surface. We are going to encounter these quantities again and again in solving engineering problems. So 

let us study each one of them in detail.  

Torque due to a force: As discussed earlier, torque about a point due to a force is obtained as the 

vector product  

 

where is a vector from the point O to the point where the force is being applied. Actually could be 

a vector from O to any point along the line of action of the force as we will see below. The magnitude of 

the torque is given as  

 

Thus the magnitude of torque is equal to the product of the magnitude of the force and the 

perpendicular distance from O to the line of action of the force as 

shown in figure 7 in the plane containing point O and the force vector. Since this distance is fixed, the 

torque due to a force can be calculated by taking vector to be any vector from O to the line of action 

of the force. The unit of a torque is Newton-meter or simply Nm.  
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Let us look at an example of this in 2 dimensions.  

Example 3: Let there be a force of 20 N applied along the vector going from point (1,2) to point (5,3). So 

the force can be written as its magnitude times the unit vector from (1,2) to (5,3). Thus  

 

Torque can be calculated about O by taking to be either . As argued above, the 

answer should be the same irrespective of which we choose. Let us see that. By taking to be 

we get  

 

On the other hand, with we get  
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Which is the same as that obtained with . Thus we see that the torque is the same no 

matter where along the line of action is the force applied. This is known as the transmissibility of the 

force. So we again write that  

 

where is any vector from the origin to the line of action of the force.  

If there are many forces applied on a body then the total moment about O is the vector sum of all other 

moments i.e.  

 

As a special case if the forces are all applied at the same point j then  

 

This is known as Varignon's theorem. Its usefulness arises from the fact that the torque due to a given 

force can be calculated as the sum of torques due to its components.  

As would be clear to you from the discussion so far torque depends on the location of point O . If for the 

same applied force, the torque is taken about a different point, the torque would come out to be 

different. However, as mentioned earlier, there is one special case when the torque is independent of 

the force applied and that is when the net force(vector sum of all forces) on the system is zero. Let us 

prove that now: Consider the torque of a force being calculated about two different points O and O' 

(figure 8).  
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The torques about O and O' and their difference is:  

 

But from the figure above  

 

Therefore  

 

Now if the net force is zero, is zero and the difference between the torques about two different 

points also vanishes. A particular example of the net force being zero is two equal magnitude forces in 

directions opposite to each other and applied at a distance from one another, as in figure 5 above and 

also shown in figure 9 below. This is known as a couple and the corresponding torque with respect to 

any point is given as  

 

where is a unit vector perpendicular to the forces coming out of the space between them and d is the 

perpendicular distance between the forces (see figure 9).  
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Since the net force due to a couple is zero, the only action a couple has on a body is to tend to rotate it. 

Further the moment of a couple is independent of the origin, and so it can be applied anywhere on the 

body and it will have the same effect on the body. We can even change the magnitude of the force and 

alter the distance between them keeping the magnitude of the couple the same. Then also the effect of 

couple will be the same. Such vectors whose effect remains unchanged irrespective of where they are 

applied are known as free vectors. Free vectors have a nice property that they can be added irrespective 

of where they are applied without changing the effect they produce. Thus a couple is a free vector (Is 

force a free vector?). It is represented by the symbols  

   

 

with the arrows clearly giving the sense of rotation. Keep in mind though that the direction of the couple 

(in the vector sense) is perpendicular to the plane in which the forces forming the couple are.  

Next we focus on the moment of a force about an axis.  



31 
 

Moment of force about an axis: So far we have talked about moment of a force about a point only. 

However, many a times a body rotates about an axis. This is the situations you have bean studying in 

you 12th grade. For example a disc rotating about an axis fixed in two fixed ball bearings. In this case 

what affects the rotation is the component of the torque along the axis, where the torque is taken about 

a point O (the point can be chosen arbitrarily) on the axis as given in figure 11. Thus  

 

where is the unit vector along the axis direction and is the vector from point O on the axis to the 

force .  

 

Using vector identities (exercise at the end of Lecture 1), it can also be written as  

 

Thus the moment of a force about an axis is the magnitude of the component of the force in the plane 

perpendicular to the axis times its perpendicular distance from the axis. Thus if a force is pointing 

towards the axis, the torque generated by this force about the axis would be zero. This can be 

understood as follows. When a force is applied, forces are generated at the ends of the axis being held 

on a one place. These forces together with generate the torque when components along the axis by 

responsible for rotation of the body about the axis, in the same manner, the couple about the axis is 
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given by the component of the couple moment in the direction for the axis. You can work it out; it is 

actually equal to the component of the force in the plane perpendicular to the axis times the distance 

of the force line of action from the axis. One point about the moment about an axis, it is 

independent of the origin since it depends only on the distance of the force the axis.  

As an example let us consider a disc of radius 30 cm with its axis along the z-axis and its centre at z=0. 

Let a force act on it at the point on the disc. We now find its 

moment about its axis. The axis has . We take the origin at the centre of the disc to calculate  

 

Therefore the torque about the z-axis is  

 

Thus the torque about the axis is in the negative z direction which means that it would tend to rotate 

the disc clockwise.  

Let us now see if it fits with our conventional way of calculating torque of a force about an axis. For the 

force   the z-component of the force will not give any torque about the z-axis 

because it cannot rotate the body about the z-axis. So the only component of the force that gives torque 

about the z-axis is that acts on the point as shown in figure 12. The magnitude of this force 

is .  
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The equation of line along which the force acts is  

 

To find the perpendicular distance of this line from the origin, we consider a line perpendicular to this 

line passing through the origin and consider the point where it intersects with 

. The perpendicular line is  

 

Solving for the intersection point we get  
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which gives the perpendicular distance of the line of force from the centre to be  

 

Then torque about z-axis therefore is therefore clockwise, which is the 

same as obtained that earlier. I would like you to notice that even in this simple example using vector 

algebra makes life quite easy.  

  

Let us summarize this lecture by summarizing what we have learnt:  

(1) For equilibrium of a body  

 

are necessary and sufficient conditions.  

(2) The torque about a point due to forces applied on a body, is an origin dependent 

quantity but for special case of it is origin independent. 

(3) A particular case of is a couple moment when two forces are equal & opposite and are 

separated by distance d . The couple moment is .  

(4) Torque about an axis is given by it component along the axis. Thus y and axis is along direction.  

(5)  

   

 Lecture 4 

Equilibrium of bodies II  

In the previous lecture we have defined a couple moment. With this definition, we can now represent a 

force applied on a body pivoted at a point as the sum of the same force on it at the pivot and a 

couple acting on it. This is shown in figure 1. Thus if the bar shown in figure 1 is in equilibrium, the pivot 

must be applying a force and a counter couple moment on it.  
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To see the equivalence, let us take the example above and add a zero force to the system at the pivot 

point. This does not really change the force applied on the system. However, the trick is to take this zero 

force to be made up of forces and as shown in figure 2. Now the original force and at 

the pivot are separated by distance d and therefore form a couple moment of magnitude Fd . In addition 

there is a force on the body at the pivot point. The combination is therefore a force at the pivot 

point P and a couple moment . Notice that I am not saying about the pivot. This is because a 

couple is a free vector and its effect is the same no matter at which point it is specified.  

 



36 
 

Example: You must have seen the gear shift handle in old buses. It is of Zigzag shape. Let it be of the 

shape shown in figure 3: 60cm at an angle of 45° from the x-axis, 30cm parallel to x-axis and then 30cm 

again at 45° from the x-axis, all in the x-y plane shown in figure 3. To change gear a driver applies a force 

of on the head of the handle. We want to know what is the equivalent force and 

moment at the bottom i.e., at the origin of the handle.  

 

For this again we can apply a zero force i.e., ( and ) at the bottom so that original force and 

  give a couple moment  

 

Thus equivalent force system is a force at the bottom and a couple equal to 

Nm.  
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Having obtained equivalent force systems, next we wish to discuss what kind of forces and moments do 

different elements used in engineering mechanics apply on other elements.  

 Forces and couples generated by various elements: As we solve engineering problems, we come across 

many different elements that are used in engineering structures. We discuss some of them below 

focusing our attention on what kind of forces and torques do they give rise to.  

The simplest element is a string that can apply a tension. However a string can only pull by the tension 

generated in it but not push. For example, a string holding a weight W will develop a tension T = W in it 

so that the net force on the weight is a tension T pulling the weight up and weight W pulling it down. 

Thus if the weight is in equilibrium, T = W . This is shown in figure 4.  

 

The second kind of force that is applied when two elements come in contact is that applied by a surface. 

A smooth surface always applies a force normal to itself. The forces on a rod and on a box applied by the 

surface are shown in figure 5. Thus as far as the equilibrium is concerned, for an object on a smooth 

surface, the surface is equivalent to a force normal to it.  
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Imagine what would have happened had the force by the surface not been normal. Then an object put 

on a surface would start moving along the surface because of the component of the force along the 

surface. By the same argument if there is a smooth surface near an edge, the force on the surface due to 

the edge (and by Newton's IIIrd law the force on the edge due to the surface) will be normal to the 

surface. See figure 6.  

 

On the other hand if the surface is not smooth, it is then capable of applying a force along the surface 

also. This force is due to friction.  

Let us now solve the well known example of a roller of radius r being pulled over a step as shown in 

figure 7. The height of the step is h. What is minimum force F required if the roller is pulled in the 

direction shown and is about to roll over the step. What are the normal and frictional forces at that 

instant?  
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When the roller is about to roll over the step, there will be no normal reaction from the lower surface 

and therefore the roller will be under equilibrium under the influence of its weight W, the applied force 

F and the normal reaction N and the frictional force f applied by the edge of the step. To calculate the 

force F, we apply the torque equation about the edge to get  

 

To find N and f we apply the force equation  

 

That can be written in the component form a  

 

Let us look at these equations.  
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Solving these equations gives  

 

So in this situation, we do not require friction to keep the roller in equilibrium. On the other hand recall 

the problem in the previous lecture when we were trying to lift a 1000Nt weights by putting a rod on a 

brick edge. In that case we did require friction.  

Next we consider a hinge about when an object can rotate freely. A hinge can apply a force in any 

direction. Thus it can apply (figure 8a) any force in X-direction and any amount of force in Y-direction but 

no couple.  
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To see an example, imagine lifting a train berth by pulling it horizontally. We wish to know at what angle 

θ from the horizontal will the berth come to equilibrium if we pull it out by a horizontal force F and what 

are the forces apply by the hinges (figure 8b).  

 

Let the weight of the berth be W and its width l. Let the forces applied by the hinges be FH in the 

horizontal direction and FV in the vertical direction. By equilibrium conditions  

 

 

where the negative sign for FH implies that it is in the direction opposite to that assumed.  

Similarly  

 

To find the angle we apply the moment or torque balance equation about the hinges. Weight W gives a 

counter clockwise torque of and the force F gives a clockwise torque of Fl sin?  



42 
 

 

I should point put that if the hinge is not freely moving (for example due to friction) then it can produce 

a moment (couple) that will oppose any tendency to rotate and will have to be taken into account while 

considering the torque balance equation.  

Next we look at a built in or fixed support as shown in the figure.  

   

 

Let us analyze what happens in these cases when a load is applied. Let us look at the built-in support.  
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As the load is put on, the beam will tend to move down on the right side pushing the inner side up. This 

will generate reaction forces as shown schematically in figure 10. The generated forces can be replaced 

by a couple and a net force either about point A or B as follows (see figure 11). Add zero force N1 -N1 at 

point A then the original N1 and -N1 give a couple and no force and there is a net force ( N1 -N2) at A.  

 

We could instead have added a zero force N2 - N2 at B and then would have obtained an equivalent 

system with a different couple moment than the previous case and a net force (N1 - N2) at B. I leave this 

for you to see. You may be wondering by now at which exactly does the force really act and what is the 

value of the couple. Actually in the present case the two unequal forces act on the beam so the torque 

provided by them is not independent of the point about which it is take. In such cases, as we will learn in 

the later lectures, the force effectively acts at the centroid of the force and the couple moment is equal 

to the torque evaluated about the centroid. In any case we can say that a built-in support provides a 

couple and a force. We give the schematic picture above only to motivate how the forces and the couple 

are generated. In reality the forces are going to be distributed over the entire portion of the support 

that is inside the wall and it is this distribution of force that provides a net force at the centroid and a 

couple equal to the torque calculated about the centroid, as we will see in later lectures. Note that 

deeper the support is fixed into a wall, larger would be the couple provided by it. Hence whereas to 

hang a light photo-frame or a painting on a wall a small nail would suffice, a longer nail would be better 

if the frame is heavy. In addition to providing a force perpendicular to the support and a couple, a fixed 

support also provides a force in the direction parallel to itself. Thus if you try to pull out the support or 

try to push it in, it does not move easily. The forces and couple provided by a fixed support are therefore 

as shown in figure 12.  
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Let us now look at the support welded/ glued to the well. In that case suppose we put a load W at the 

end of the beam, you will see that the forces generated will be as shown below in figure 13.  

 

where in this particular case the horizontal forces must be equal so as to satisfy  

 

Thus the horizontal forces provide a couple and the beam can be said to provide a couple a force in the 

direction perpendicular to the support. Further a glued support also cannot be pulled out or pushed in. 

Therefore it too is capable of providing a horizontal nonzero reaction force. Thus a welded or glued 

support can also be represented as shown in figure 12. Note that wider the support, larger moment it is 

capable of providing. Let us now solve an example of this.  

Example: You must have seen gates being supported on two supports (see figure 14). Suppose the 

weight of the gate is W and its width b. The supports are protruding out of the wall by a and the 

distance between them is h. If the weight of the gate is supported fully by the lower support, find the 

horizontal forces, vertical forces and the moment load on both the supports.  
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To solve this problem, let us first find out what are the forces required to keep the gate in balance. The 

forces applied by the supports on the gate are shown in figure 14. Since the weight of the gate is fully 

supported on the lower support all the vertical force is going to be provided by the lower support only. 

Thus  

 

Similarly  

 

To find, , let us take moment about point A or B  

Let us make . This gives (following the convention that counterclockwise torque is positive 

and clockwise torque is negative)  
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The negative sign for FX2 means that the force's direction is opposite to what it was taken to be in figure 

14. We also wish to find the forces and couple on the support. By Newton 's IIIrd Law, forces on the 

support are opposite to those on the gate. Thus the forces on the two supports are:  

 

You see that support A is being pulled out whereas support B is being pushed in (we observe an effect of 

this at our houses all the time: the upper hinges holding a door tend to come out of the doorjamb). Now 

the force by the wall on support A will be to the right to keep it fixed in its place. On the other 

hand the situation for the lower support is more involved. The lower support will be kept in its place by 

the wall providing it horizontal and vertical forces and a torque. The net horizontal force is to the 

left and the net vertical force is W pointing up. The lower support also balances a torque. Taking the 

torques about the point where it enters the wall, its value comes out to be  

 

If we assume that the net vertical force and the torque is provided by only two reaction forces at two 

points as in figure 10, these two reaction forces can be calculated easily if we know the length of the 

portion inside the wall. I leave it as an exercise. In solving this, you will notice that the reaction forces 

are smaller if the support is deeper inside the wall. As pointed out earlier, in reality the force is going to 

be distributed over the entire portion of the support inside the wall. So a more realistic calculation is a 

little more involved.  

To summarize this lecture, we have looked at some simple engineering elements and have outlined 

what kind of forces and torques are they capable of applying. In the next lecture we are going discuss 

forces in three dimensions. We are also going to look at conditions that forces with certain geometric 

relations should satisfy for providing equilibrium.  
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Lecture 5  

Equilibrium of bodies III 

In the previous lecture I have been talking about equilibrium in a plane. We now move on to three 

dimensional (3-d) cases. In three dimensional cases the equilibrium conditions lead to balance along all 

three axes. Then  

 

We now have to take care of components of forces and torque in all three dimensions. The engineering 

elements that we considered earlier are now considered as 3-d case. Thus consider a ball-socket joint in 

which a ball is supported in a socket (figure 1).  

 

A ball-socket joint provides reaction forces Nx, Ny and Nz in all three directions (figure 1) but it cannot 

apply any torque. This is a little like a hinge joint in 2d . Let me solve an example using such a joint.  

   

Example 1: To balance a heavy weight of 5000 N, two persons dig a hole in the ground and put a pole of 

length l in it so that the hole acts as a socket. The pole makes an angle of 30° from the ground. The 

weight is tied at the mid point of the pole and the pole is pulled by two horizontal ropes tied at its ends 
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as shown in figure 2. Find the tension in the two ropes and the reaction forces of the ground on the 

pole.  

 

To solve this problem, let me first choose a co-ordinate system. I choose it so that the pole is over the y-

axis in the (y-z) plane (see figure 2).  

The ropes are in (xy) direction with tension T in each one of them so that tension in each is written as  

 

You may be wondering why I have taken the tension to be the same in the two ropes. Actually it arises 

from the torque balance equation; if the tensions were not equal, their component in the x-direction 

will give a nonzero torque.  

Let the normal reaction of the ground be (Nx , Ny , Nz). Then the force balance equation gives  

 

Taking torque about point O and equating it to zero, we get  
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which gives  

 

Next, if I consider a fixed connection, say in a wall, it is capable of providing force along all the three axes 

and also of providing torques about the three axes, Thus in 3-d it will be represented as shown in figure 

3.  

 

This is a generalization of the fixed or welded/glued support in 2-d . How are these torques etc. 

generated? Recall what I did for a fixed support in 2-d and carry out a similar analysis in 3-d.  

Hopefully by the analysis carried out so far, you would be able to recognize what all reactions a given 

element of a mechanical system can provide. For example look at the support shown in figure 4 where 

the shaft can not move through the hole in the fixed block, but it is free to rotate. Can you tell the 

reaction forces and torques that this support provides?  
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Having discussed the elements that apply different kinds of forces, let us look at some situations there 

due to the geometry of forces applied, some of the equilibrium equations are automatically satisfied. If 

we recognize this, it saves us from doing extra calculations involving that particular condition.  

If all forces are concurrent at a point (see figure 5), i.e., they all cross each other at one point O then 

torques of all the forces is identically zero about O . Thus the only equilibrium condition is  

 

Recall that if the sum of all forces on a system is zero, torque is independent of the origin. Thus although 

in the beginning I used the fact that torque about the point of concurrence is zero, it is true about any 

point once the force equation for equilibrium is satisfied.  
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Next consider the case when all forces intersect one particular line, call it the z-axis without any loss of 

generality (see figure 6).  

 

Using transmissibility of the force, in this case we can take the force to be acting at point 

Then the torque due to all these forces will be  
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Thus the Z component of the torque is automatically zero. In general when the forces intersect a line, 

the torque component along that line vanishes. Under these circumstances, if we take that line to be the 

z-axis, the equilibrium conditions are  

 

Next I discuss what happens if all the applied forces are parallel, say to the Z axis. Then the forces do not 

have any x or y components. Further, by the z-component of the torque also vanishes (left as an exercise 

for you to show). The equilibrium conditions in this case reduce to  

 

In general of course we have all the six condition.  

 

  

Let me now summarize what all you have learnt so far in considering the equilibrium of engineering 

structures. In the process I also introduce you to a term called the Free Body Diagram. I have actually 

been using it without calling it so. Now, let us formalize it.  

In talking about the equilibrium of a body we consider all the external forces applied on it and the 

interaction of the body with other objects around it. This interaction produces more forces and torques 

on the body. Thus when we single out a body in equilibrium, objects like hinges, ball-socket joint, fixed 

supports around it are replaced elements by the corresponding forces & torques that they generate. 

This is what is called a free-body diagram. Making a free-body diagram allows us to focus our attention 

only on the information relevant to the equilibrium of the body, leaving out unnecessary details. Thus 

making a free-body diagram is pretty much like Arjuna - when asked to take an aim on the eye of a bird - 

seeing only the eye and nothing else. The diagrams made on the right side of figures 1, 2 and 3 are all 

free-body diagrams.  
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In the coming lecture we will be applying the techniques learnt so far to a very special structure called 

the truss. To prepare you for that, in the following I consider the special case of a system in equilibrium 

under only two forces. For completeness I will also take up equilibrium under three forces.  

When only two forces are applied, no matter what the shape or the size of the object in equilibrium is, 

the forces must act along the same line, in directions opposite to each other, and their magnitudes must 

be the same. That the forces act in directions opposite to each other and have equal magnitude follows 

from the equilibrium conditions , which implies that . Further, if the forces are 

not along the same line then they will form a couple that will tend to rotate the body. Thus 

implies that the forces act along the same line, i.e. they be collinear (see figure 7).  

 
 

Similarly if there are three forces acting on a body that is in equilibrium then the three forces must be in 

the same plane and concurrent. If there are not concurrent then they must be parallel (of course 

remaining in the same plane). This can be understood as follows. Any two members of the three applied 

forces form a plane. If the third force is not in the same plane, it will have a non-vanishing component 

perpendicular to the plane; and that component does not get cancelled. Thus unless all three forces are 

in the same plane, they cannot add up to zero. So to satisfy the equation , the forces must be 

in the same plane, i.e. they must be coplanar. For equilibrium the torque about any point must also be 

zero. Since the forces are in the same plane, any two of them will intersect at a certain point O. These 

two forces will also have zero moment about O. If the third force does not pass through O, it will give a 

non-vanishing torque (see figure 8). So to satisfy the torque equation, the forces have to be concurrent. 

Zero torque condition can also be satisfied if the three forces are parallel forces (see figure 8); that is the 

other possibility for equilibrium under three forces.  
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In the end, I now discuss one more concept about equilibrium of bodies, that of statical determinacy . 

Along the way I also introduce some connected concepts like constraints, degree of redundancy and 

redundant support. On constraints, I will discuss more in the lecture on Method of virtual work.  

To introduce the terms used above, I consider a rod of length l and weight W held at a pin-joint on a 

floor at a distance of a from a wall, on which its other end is. This is shown in figure 9 along with the 

free-body diagram of the rod.  

 

There are three unknowns - Rx, Ry and N - in the problem and three equations of equilibrium that will 

determine the unknowns. Specifically:  
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Taking moment about the pin, we get  

 

This gives  

   

 

In this case, the constraints or the external supports we apply are just sufficient to keep the system in 

equilibrium. Such systems are known as statically determinate systems. Now suppose we apply one 

more support. Let us support the rod at both ends by pin joints. The free-body diagram will then look 

like that shown in figure 10.  

 

Now the pin on top end is also applying a force on the rod. Thus the equations of equilibrium read as  

 

The situation on hand is that we have four unknowns - Rx, Ry, Nx and Ny - and only three equations. 

Thus one of the unknown cannot be determined. In particular only is known and what 

are individual cannot be determined unless some additional information is also given. Such 

systems are known as statically indeterminate systems. In such systems we are applying more 



56 
 

constraints than are needed to keep the system in equilibrium. Even if we remove one of the constraints 

- in this case replace the upper pin by a plane surface - the system is capable of remaining in equilibrium. 

Such supports that can be removed without disturbing the equilibrium are known as redundant 

supports. And the number of redundant supports is the degree of statical indeterminacy .  

After introducing you to the concepts discussed above, we will be studying trusses in the next lecture.  

Lecture 6  

Trusses  

Having set up the basics for studying equilibrium of bodies, we are now ready to discuss the trusses that 

are used in making stable load-bearing structures. The examples of these are the sides of the bridges or 

tall TV towers or towers that carry electricity wires. Schematic diagram of a structure on the side of a 

bridge is drawn in figure 1.  

 
The structure shown in figure 1 is essentially a two-dimensional structure. This is known as a plane truss. 

On the other hand, a microwave or mobile phone tower is a three-dimensional structure. Thus there are 

two categories of trusses - Plane trusses like on the sides of a bridge and space trusses like the TV 

towers. In this course, we will be concentrating on plane trusses in which the basis elements are stuck 

together in a plane.  

To motivate the structure of a plane truss, let me take a slender rod (12) between points 1 and 2 and 

attach it to a fixed pin joint at 1 (see figure 2).  
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Now I put a pin (pin2) at point 2 at the upper end and hang a weight W on it. The question is if we want 

to hold the weight at that point, what other minimum supports should we provide? For rods we are to 

make only pin joints (We assume everything is in this plane and the structures does not topple side 

ways). Since rod (12) tends to turn clockwise, we stop the rightward movement of point 2 by connecting 

a rod (23) on it and then stop point 3 from moving to the right by connecting it to point 1 by another rod 

(13). All the joints in this structure are pin joints. However, despite all this the entire structure still has a 

tendency to turn to turn clockwise because there is a torque on it due to W. To counter this, we attach a 

wheel on point 3 and put it on the ground. This is the bare minimum that we require to hold the weight 

is place. The triangle made by rods forms the basis of a plane truss.  

Note: One may ask at this point as to why as we need the horizontal rod (13). It is because point 3 will 

otherwise keep moving to the right making the whole structure unstable. Rod (13) has two forces acting 

on it: one vertical force due to the wheel and the other at end 2. However these two forces cannot be 

collinear so without the rod (13) the system will not be in equilibrium. Generally, in a truss each joint 

must be connected to at least three rods or two rods and one external support.  

Let us now analyze forces in the structure that just formed. For simplicity I take the lengths of all rods to 

be equal. To get the forces I look at all the forces on each pin and find conditions under which the pins 

are in equilibrium. The first thing we note that each rod in equilibrium under the influence of two forces 

applied by the pins at their ends. As I discussed in the previous lecture, in this situation the forces have 

to be collinear and therefore along the rods only. Thus each rod is under a tensile or compressive force. 

Thus rods (12), (23) and (13) experience forces as shown in figure 3.  

 

Notice that we have taken all the forces to be compressive. If the actual forces are tensile, the answer 

will come out to be negative. Let us now look at pin 2. The only forces acting on pin 2 are F12 due to rod 

(12) and F23 due to rod (23). Further, it is pulled down by the weight W. Thus forces acting on pin 2 look 

like shown in figure 4.  
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Applying equilibrium condition to pin (2) gives  

 

Let us now look at pin 3 (see figure 4). It is in equilibrium under forces F23, normal reaction N and a 

horizontal force F13.  

Applying equilibrium condition gives  

 

Since the direction of F13 is coming out to be negative, the direction should be opposite to that assumed. 

Balance of forces in the vertical direction gives  

 

Thus we see that the weight is held with these three rods. The structure is determinate and it holds the 

weight in place.  

Even if we replace the pin joints by a small plate (known as gusset plate) with two or three pins in these, 

the analysis remains pretty much the same because the pins are so close together that they hardly 

create any moment about the joints. Even if the rods are welded together at the joints, to a great degree 

of accuracy most of the force is carried longitudinally on the rods, although some very small (negligible) 

moment is created by the joints and may be by possible bending of the rods.  
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Now we are ready to build a truss and analyze it. We are going to build it by adding more and more of 

triangles together. As you can see, when we add these triangles, the member of joints j and the number 

of members (rods) m are related as follows:  

m = 2j - 3  

This makes a truss statically determinate. This is easily understood as follows. First consider the entire 

truss as one system. If it is to be statically determinate, there should be only three unknown forces on it 

because for forces in a plane there are three equilibrium conditions. Fixing one of its ends a pin joint and 

putting the other one on a roller does that (roller also gives the additional advantage that it can help in 

adjusting any change in the length of a member due to deformations). If we wish to determine these 

external forces and the force in each member of the truss, the total number of unknowns becomes m + 

3. We solve for these unknowns by writing equilibrium conditions for each pin; there will be 2j such 

equations. For the system to be determinate we should have m + 3 = 2j , which is the condition given 

above. If we add any more members, these are redundant. On the other hand, less number of members 

will make the truss unstable and it will collapse when loaded. This will happen because the truss will not 

be able to provide the required number of forces for all equilibrium conditions to be satisfied. Statically 

determinate trusses are known as simple trusses. 

Exercise 1: Shown in figure 5 are three commonly used trusses on the sides of bridges. Show that all 

three of them are simple trusses.  

 

You may ask why we put trusses on bridges. As our later analysis will show they distribute the load over 

all elements and thereby making the bridge stronger.  
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We now wish to obtain the forces generated in various arms of a truss when it is loaded externally. This 

is done under the following assumptions:  

1. If the middle line of the members of a truss meet at a point that point is taken as a pin joint. This 

is a very god assumption because as we have seen earlier while introducing a truss (triangle with 

pin joint), the load is transferred on to other member of the trusses so that forces remain 

essentially collinear with the member.  

2. All external loads are applied on pin connections.  

3. All members' weight is equally divided on connecting pins.  

There are two methods of determining forces in the members of a truss - Method of joints and method 

of sections. We start with the method of joints:  

Method of joints: In method of joints, we look at the equilibrium of the pin at the joints. Since the forces 

are concurrent at the pin, there is no moment equation and only two equations for equilibrium viz. 

. Therefore we start our analysis at a point where one known load and at 

most two unknown forces are there. The weight of each member is divided into two halves and that is 

supported by each pin. To an extent, we have already alluded to this method while introducing trusses. 

Let us illustrate it by two examples.  

Example 1: As the first example, I take truss ABCDEF as shown in figure 6 and load it at point E by 

5000N. The length of small members of the truss is 4m and that of the diagonal members is m. I 

will now find the forces in each member of this truss assuming them to be weightless.  

 

We take each point to be a pin joint and start balancing forces on each of the pins. Since pin E has an 

external load of 5000N one may want to start from there. However, E point has more than 2 unknown 
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forces so we cannot start at E. We therefore first treat the truss as a whole and find reactions of ground 

at points A and D because then at points A and D their will remain only two unknown forces. The 

horizontal reaction Nx at point A is zero because there is no external horizontal force on the system. To 

find N2 I take moment about A to get  

 

which through equation gives  

 

In method of joints, let us now start at pin A and balance the various forces. We already anticipate the 

direction and show their approximately at A (figure 7). All the angles that the diagonals make are 45° .  

 
The only equations we now have worry about are the force balance equations.  
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Keep in mind that the force on the member AB and AF going to be opposite to the forces on the pin ( 

Newton 's IIIrd law). Therefore force on member AB is compressive (pushes pin A away) whereas that on 

AF is tensile (pulls A towards itself).  

Next I consider joint F where force AF is known and two forces BF and FE are unknown. For pint F  

 

Next I go to point B since now there are only two unknown forces there. At point B  

 

Negative sign shows that whereas we have shown FBE to be compressive, it is actually tensile.  

 

Next I consider point C and balance the forces there. I have already anticipated the direction of the 

forces and shown FCE to be tensile whereas FCD to be compressive  

 

Next I go to pin D where the normal reaction is N and balance forces there.  

 

Thus forces in various members of the truss have been determined. They are  
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You may be wondering how we got all the forces without using equations at all joints. Recall that is how 

we had obtained the statical determinacy condition. We did not have to use all joints because already 

we had treated the system as a whole and had gotten two equations from there. So one joint - in this 

case E - does not have to be analyzed. However, given that the truss is statically determinate, all these 

forces must balance at point E, where the load has been applied, also. I will leave this as an exercise for 

you. Next I ask how the situation would change if each member of the truss had weight. Suppose each 

members weighs 500N, then assuming that the load is divided equally between two pins holding the 

member the loading of the truss would appear as given in figure 8 (loading due to the weight as shown 

in red). Except at points A and D the loading due to the weight is 750N; at the A and D points it is 500N.  

 

Now the external reaction at each end will be.  

 

The extra 2000N can be calculated either from the moment equation or straightaway by realizing that 

the new added weight is perfectly symmetric about the centre of the truss and therefore will be equally 

divided between the two supports. For balancing forces at other pins, we follow the same procedure as 

above, keeping in mind though that each pin now has an external loading due to the weight of each 

member. I'll solve for forces in some member of the truss. Looking at pin A, we get  
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Next we move to point F and see that the forces are  

 

One can similarly solve for other pins in the truss and I leave that as an exercise for you.  

Having demonstrated to you the method of joints, we now move on to see the method of sections that 

directly gives the force on a desired member of the truss.  

 Method of sections : As the name suggests in method of sections we make sections through a truss and 

then calculate the force in the members of the truss though which the cut is made. For example, if I take 

the problem we just solved in the method of joints and make a section S1, S2 (see figure 9), we will be 

able to determine the forces in members BC, BE and FE by considering the equilibrium of the portion to 

the left or the right of the section.  

 
Let me now illustrate this. As in the method of joints, we start by first determining the reactions at the 

external support of the truss by considering it as a whole rigid body. In the present particular case, this 
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gives N at D and N at A. Now let us consider the section of the truss on the left (see figure 

10).  

 

Since this entire section is in equilibrium, . Notice that we are now 

using all three equations for equilibrium since the forces in individual members are not concurrent. The 

direction of force in each member, one can pretty much guess by inspection. Thus the force in the 

section of members BE must be pointing down because there is no other member that can give a 

downward force to counterbalance N reaction at A. This clearly tells us that F BE is tensile. 

Similarly, to counter the torque about B generated by N force at A, the force on FE should also be 

from F to E. Thus this force is also tensile. If we next consider the balance of torque about A, N 

and FFE do not give any torque about A. So to counter torque generated by FBE , the force on BC must act 

towards B, thereby making the force compressive.  

Let us now calculate individual forces. FFE is easiest to calculate. For this we take the moment about B. 

This gives  

4 × = 4 × F FE  

F FE = N  
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Next we calculate FBE . For this, we use the equation . It gives  

 

Finally to calculate FBC , we can use either the equation about A or  

 

Thus we have determined forces in these three members directly without calculating forces going from 

one joint to another joint and have saved a lot of time and effort in the process. The forces on the right 

section will be opposite to those on the left sections at points through which the section is cut. This can 

be used to check our answer, and I leave it as an exercise for you.  

After this illustration let me put down the steps that are taken to solve for forces in members of a truss 

by method of sections:  

1. Make a cut to divide the truss into section, passing the cut through members where the force is 

needed.  

2. Make the cut through three member of a truss because with three equilibrium equations viz. 

we can solve for a maximum of three forces.  

3. Apply equilibrium conditions and solve for the desired forces.  

In applying method of sections, ingenuity lies in making a proper. The method after a way of directly 

calculating desired force circumventing the hard work involved in applying the method of joints where 

one must solve for each joint.  

We thus conclude one lecture or trusses. Next step in making the treatment accurate is obviously to 

take care of deformation in the members of a truss. This will be done in an advanced course later.  

Lecture 7 

Friction 

Whatever we have studied so far, we have always taken the force applied by one surface on an 

object to be normal to the surface. In doing so, we have been making an approximation i.e., we 

have been neglecting a very important force viz., the frictional force. In this lecture we look at the 

frictional force in various situations.  
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In this lecture when we talk about friction, we would mean frictional force between two dry 

surfaces. This is known as Coulomb friction. Frictional forces also exist when there is a thin film of 

liquid between two surfaces or within a liquid itself. This is known as the viscous force. We will not 

be talking about such forces and will focus our attention on Coulomb friction i.e., frictional forces 

between two dry surfaces only. Frictional force always opposes the motion or tendency of an 

object to move against another object or against a surface. We distinguish between two kinds of 

frictional forces - static and kinetic - because it is observed that kinetic frictional force is slightly less 

than maximum static frictional force.  

Let us now perform the following experiment. Put a block on a rough surface and pull it by a force 

F (see figure 1). Since the force F has a tendency to move the block, the frictional force acts in the 

opposite direction and opposes the applied force F. All the forces acting on the block are shown in 

figure 1. Note that I have shown the weight and the normal reaction acting at two different points 

on the block. I leave it for you to think why should the weight and the normal reaction not act 

along the same vertical line?  

  

      

It is observed that the block does not move until the applied force F reaches a maximum value Fmax. 

Thus from F = 0 up to F = Fmax, the frictional force adjusts itself so that it is just sufficient to stop the 

motion. It was observed by Coulombs that F max is proportional to the normal reaction of the 

surface on the object. You can observe all this while trying to push a table across the room; heavier 

the table, larger the push required to move it. Thus we can write  

 

where µs is known as the coefficient of static friction. It should be emphasize again that is the 
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maximum possible value of frictional force, applicable when the object is about to stop, otherwise 

frictional force could be less than, just sufficient to prevent motion. We also note that frictional 

force is independent of the area of contact and depends only on N .  

As the applied force F goes beyond F , the body starts moving now experience slightly less force 

compound to. This force is seem to be when is known as the coefficient of kinetic friction. At low 

velocities it is a constant but decrease slightly at high velocities. A schematic plot of frictional force 

F as a function of the applied force is as shown in figure 2.  

 

Values of frictional coefficients for different materials vary from almost zero (ice on ice) to as large 

as 0.9 (rubber tire on cemented road) always remaining less than 1.  

A quick way of estimating the value of static friction is to look at the motion an object on an 

inclined plane. Its free-body diagram is given in figure 3.  
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Since the block has a tendency to slide down, the frictional force points up the inclined plane. As 

long as the block is in equilibrium  

 

As θ is increased, mgsinθ increases and when it goes past the maximum possible value of friction 

fmax the block starts sliding down. Thus at the angle at which it slides down we have  
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Lecture 8 

Properties of plane surfaces I: First moment and centroid of area  

Having deal with trusses and frictional forces, we now change gears and go on to discuss some 

properties of surfaces mathematically. Of course we keep connecting these concepts to physical 

situations.  

The first thing that we discuss is the properties of surfaces. This is motivated by the fact is general the 

forces do not act at a single point but are distributes over a body. For example the gravitational force 

pulling an object down acts over the entire object. Similarly a plate immersed in water, for example has 

the pressure acting on it over the entire surface. Thus we would like to know at which point does the 

force effectively act? For example in the case of an object in a gravitational field, it is the centre of 

gravity where the force acts effectively. In this lecture we develop important mathematical concepts to 

deal with such forces. Let us start with the first moment of an area and the centroid .  

First moment of an area and the centroid: We first consider an area in a plane; let us call it the X-Y 

plane (see figure 1).  

https://nptel.ac.in/content/storage2/courses/122104014/lecture7/7_2.htm
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The first moment MX of the area about the x-axis is defined as follows. Take small area element of area 

ΔA and multiply it by its y-coordinate, i.e. its perpendicular distance from the X-axis, and then sum over 

the entire area; the sum obviously goes over to an integral in the continuous limit. Thus  

 

Similarly the first moment MY of the area about the y-axis is defined by multiplying the elemental area 

ΔA by its x-coordinate, i.e. its perpendicular distance from the Y-axis, and summing or integrating it over 

the entire area. Thus  

 

This is shown in figure 2.  
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Centroid: Centroid of a bounded area is a point whose x-coordinates XC and y-coordinate YC are defined 

as  

 

where A is its total area. We now solve some examples of calculating these quantities for some simple 

areas.  

Example 1: We start with the simple example of the first moment and centroid of a triangle with the 

base along the x-axis. Let its base BC be of length b, and let the height of the triangle be h. (see figure 3)  
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To calculate the Mx, we take a strip of width dy at height y (see figure 3). Then  

 

But by similarity of triangles . So  

 

Thus  

 

Let us now calculate the x-co-ordinates for the centroid. For this let the x-coordinate of A be a so that 

the coordinate of point A is (a, h).  
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Now  

 

For dA let us now take a vertical strip (figure 4). Notice that . We will also perform the x-

integration in two parts: one from x = 0 to x = a, and the other from x = a to x = b because in the two 

regions, dependent of y on x is different so  

 

For the region x = 0 to x = a, we can write  

 

and for the region x = a to x = b, we have  

 

Thus  
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This gives  

 

Thus for a triangle .  

Example2: As the second example, let us calculate the centroid of a semicircular disc of radius R . It 

would be quite easy to solve this problem if the centre D of the circle is kept at the origin but I want to 

do the problem with the disc positioned as drawn below to show you how to tackle the problem.  

 

The equation of OBC (the circular boundary of the disc) is  

 

where R is the radius of the circle. The total area of the plate is . To calculate XC , we take a 

vertical strip of width dx at x and calculate  

 

With , we get  
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To evaluate this integral, we let so that the limits of θ integration are from 

. Then  

 

which gives  

 

To calculate YC we need to calculate MX = , where dA represents as strip from x1 to x2 (see figure 6)  

 

From the equation of the circle we get  

 

This gives  



77 
 

 

and therefore  

 

Substituting y = R sin θ , we get  

 

This gives  

 

Thus the centroid of the semicircle shown is at . Notice that the y coordinate of the centroid is 

less than which is easily understood because more of the area is concentrated towards the x-axis.  

We would no like to emphasize that the centroid (XC YC ) gives a point fixed in a given planar surface and 

no matter in which co-ordinate system we calculate this point, it will always come out to be the same 

point in the surface. Thus it is a property of a surface.  

  

Now let us make one observation: If a body is made up of different shapes of surfaces whose centroid 

are known. Than the centroid of the composite body  

 

where XCi are the centroid of different surfaces and Ai their area. I will leave the simple proof for you, 

but solve a couple of examples to show you how to use this observation.  
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Example1: Let us take a square of side a and on its two sides let there be two equilateral triangle stuck 

on it (see figure 7). We wish to calculate the centroid for this surface.  

 

We will consider this body as composed of the square AOBD, the triangle CDE on its right CDE and 

triangle EAD on its top. Then for the square we have  

 

For the triangle on the right of the square  

 

And for the triangle on top of the square  

.  

Thus for the entire plane we get  
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Similarly  

 

So because of the triangles, the centroid shift a bit to the right and a bit up with respect to the centroid 

of the square; this happens because of the added area of the triangles.  

   

Example 2: As the second example, let us take an area (ABCDE) that has been obtained by removing a 

semicircular area from a square. We wish to find its centroid.  

 

We know the position of the centroid of the square and the semicircular area. Thus  

   

 

Therefore  
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From the previous calculation, we know that the centroid for semicircle is  

 

from the base. So In the present case we have  

 

The centroid of the figure ABCDE is then  

 

which is a little more than 0.25a . If we had removed a rectangular area equal to half the square, the X C 

for the area left would have been at 0.25a ; because of the extra area to the right of this point when the 

semicircle is removed, the centroid shifts slightly to the right.  

After introducing you to the mathematical concepts of the first moment and centroid of a surface area, 

we now apply these ideas to problems in mechanics.  
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Application to mechanics: As the first simple application of the methods developed let us consider 

beams which are externally loaded. We consider only those situations where beams are supported 

externally so that the external reactions can be calculated on the basis of statics alone. As in the case of 

trusses, such beams are called statically determinate beams. Now one such beam is loaded externally 

between X1 and X2 as shown in figure 9.  

   

 

In the figure the function f(x) is the load intensity which is equal to load per unit length. Thus force over 

a length dx is given by dF = f(x) dx . The total load R therefore is  

 

Next question we ask is where is the total load located? This is determined by finding the Moment 

(torque) created by the load, which is given by  
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Thus the location of the load is given by the centroid of the area formed by the load curve and the 

beam, taking beam as the x-axis. Let us now take some examples.  

  

Uniform loading: This is shown in figure 10 along with the total load R acting at the centroid of the 

loading intensity curve. The uniform load intensity is w .  

 

The total load in this case is and the load acts at the centroid  

 

Triangular loading : This is shown in figure 11 along with the total load R acting at the centroid of the 

loading intensity curve. The height of the triangle is w .  
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In this case the total load is and the load acts at the centroid of the triangle. Recall that 

for a triangle from the lower left vertex (figure 4) and in the present case 

. Therefore the centroid is at  

 

I will leave the case of trapezoidal loading (shown in figure 12) for you to work out. You may wish to 

consider this loading as made up of two different ones: the lower one a rectangular and the upper one a 

triangular loading.  
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Let us now solve an example using here concepts.  

Example 3 : In figure 13 a beam on supports A and B is shown with two triangular loadings. All the 

parameters of the loading are shown in the figure. We wish to know the reaction at supports A and B.  

 

If we represent the total loads of the triangles on the left and that on the right by L1 and L2 , respectively 

then  
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L1 acts at the centroid of the first triangle which is at a distance  

 

From A. Similarly L2 acts at the centroid of the second triangle so its distance from A is  

 

Let the reaction at supports A and B be NA and NB , respectively. Then  

 

Further, taking moment about A gives  

 

Therefore .  

As the next example of the application of the concepts developed, we wish to calculate forces on plane 

rectangular surfaces submerged in water.  

Plane surface Submerged in water: Two questions we wish to answer are (i) What is the average 

pressure on the plate? and (ii) where does the total force due to the pressure act? Consider a 

rectangular plate of length l and width w submerged in water at an angle θ from the vertical as shown in 

figure 14. The upper end of the plate is at the depth of h1 and the lower one at the depth of h2 .  
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We first calculate the average pressure on the plate. At a depth y the pressure acting on the plate is ρgy 

, where ρ is the density of water and g the gravitational acceleration. If we now take a thin strip of width 

dy at depth y parallel to the plate's width, its area dA = , and the force on it would be dF = 

. The total force on the plate would therefore be  

 

This gives the average pressure to be  

 

To understand the significance of the expression above better, let us introduce another length variable Y 

along the plate (see figure 15).  
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Then we have so that we can write the average pressure as  

 

However, is the Y-distance of the centroid of the plate. Let us call it YC . Thus  

 

Or the average pressure on the plate is ρg( the depth of the centroid of the plate ). We point out that 

although we derived this result here for a rectangular plate, the result for the average pressure that 

is true for a planar surface of any shape. This is because 

  and is the Y-distance of the centroid of an area of any shape.  

Question that we ask now is: at what point does the total force act? To see this let us calculate the 

moment of the distributed forces due to the pressure. This is given by  

 

where  
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For a rectangular plate, , which is independent of Y. So the loading intensity (force 

per unit length) for a rectangular plate is going to have the same dependence on the depth as the 

pressure. Thus the loading on a rectangular plate is trapezoidal as shown in figure 14. The Y-coordinate 

of the point at which the force acts is  

 

This by definition is the centroid of the area formed by the loading intensity curve. You have already 

calculated the centroid of a trapezoidal loading curve. Using that result we find that the total force acts 

at a depth of  

 

Using this result we now solve one example.  

Example 4: A two meter high water tank has an opening of the size at the bottom. The 

opening is covered by a door hinged on top, shown by A, and is stopped by a fixed wedge, shown by B, 

at the bottom (see figure 16). Calculate the force on A and B (a) when tank has water filled up to 1m, 

and (b) has 25cm of water in it. Weight of the door is 19.6N.  
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(a)   As derived earlier, the average pressure on the door will be given by the depth of its centroid. The 

centroid of the square is at a depth of (0.5 + 0.25 = 0.75m) from the surface of the water. Thus the 

average pressure is  

 

Thus the total force is  

F=7350 × .25m 2 =1837.5 N  

Notice that having derived our general result for the average pressure earlier, we do not have to 

perform any integration again to calculate the total force; it is simply the average pressure times the 

total area. The force is acting at a depth of  

 

In the present case h1 = 0.5m , h2 = 1.0m . This gives that the total force is acting at a depth of 

or 0 .28m below A. Thus the free body diagram of the door looks 

as follows  



90 
 

 

From the force balance equations we have  

NA +NB = 1837.5  

and  

N1 = 19.6N  

The torque balance equation, on the other hand, gives  

.5N B = .28 x 1837.5  

This leads to NB = 1029 N . Putting this in the force balance equation above gives NA = 805.5 N. Thus all 

the forces have been calculated.  

(b) In the second case, the pressure works only on a part of the door and the loading due to the pressure 

is triangular. Having given this lead to the solution, I'll leave the rest of the problem for you to work out. 

The answers are NA = 25.425 N, NB = 127.7 N and N1 = 19.6 N.  

To summarize, in this lecture we have looked at some properties a plane and used it in statics problems. 

In the next lecture we will expand on this and develop concepts of moment of area and products of area 

etcetera.  
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Lecture 9 

Properties of surfaces II: Second moment of area  

Just as we have discussing first moment of an area and its relation with problems in mechanics, we will 

now describe second moment and product of area of a plane. In this lecture we look at these quantities 

as some mathematical entities that have been defined and solve some problems involving them. The 

usefulness of related quantities, called the moments of inertia and products of inertia will become clear 

when we deal with rotation of rigid bodies.  

 

Let us then consider a plane area in xy plane (figure 1). The second moments of the area A is defined as  

 

 

That is given a plane surface, we take a small area in it, multiply by its perpendicular distance from the x-

axis and sum it over the entire area. That gives IXX . Similarly IYY is obtained by multiplying the small area 

by square of the distance perpendicular to the y-axis and adding up all contributions (see figure 2).  
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The product of area is defined as  

 

where x and y are the coordinates of the small area dA . Obviously IXX is the same as IXY .  

   

    

Let us now solve a few examples.  

Example1: Let us start with a simple example of a square of side a with its center of the origin 

(see figure 2).  
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Figure 3  

   

 

To calculate this, we choose the elemental area as shown in figure 4 and integrate. Then  

dA = ady  

so that  
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Similarly for calculating IYY we choose a vertical elemental area and calculate  

 

Let us also calculate the product of inertia. Choose on elemental area dxdy and calculate (see 

figure 5)  

 

As noted earlier, IYX is equal to IXY and therefore it also vanishes.  
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A related problem is that of a rectangular area of size a x b. Its length of side a is parallel to the 

x-axis and the other side of length b is parallel to the y-axis. I leave this as an exercise for you to 

show that in this case , . Notice that due to the area 

being symmetrically distributed about the x- and y-axes, the product of the area comes out to 

be zero.  

Example 2 : Next let us consider a quarter of an ellipse as shown in figure 6 and calculate the 

moment and product of area for this area.  

 



96 
 

Equation of the ellipse whose quarter is shown in figure 6 is: . For calculating 

choose an area element parallel to the x-axis to calculate dA=xdy and perform the 

integral  

 

Using the equation for ellipse, we get  

 

which gives  

 

This integral can easily be performed by substituting y = b sin θ and gives  

 

Similarly by taking a vertical strip to perform the integral, we calculate  

 

and get  

 

Next we calculate the product of area IXY . To calculate IXY , we take a small element ( ) as 

shown in figure 7, multiply it by x and y and integrate to get  
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For a given x , the value of y changes from 0 to so the integral is  

 

This integral is easily performed to get  

 

Thus for a quarter of an ellipse, the moments and products of area are  

 

If we put a = b , these formulas give the moments and products of area for a quarter of a circle 

of radius a . I will leave it for you to work out what will be for the full ellipse 

about its centre.  

Using the second moment of an area, we define the concept of the radii of gyration. This is the 

point which will give the same moment of inertia as the area under consideration if the entire 

area was concentrated there. Thus  

 

define the radii of gyration kX and kY about the x- and the y-axes, respectively. In the example of 



98 
 

a rectangular area of size a x b with side a parallel to the x-axis, we had , 

. So for this rectangle, the radii of gyration are and .  

Having defined the moments and products of area, we now describe a relationship between the 

second moment of an area about a set of axes passing through the centroid of that area and 

another set of (x-y) axes which are parallel to those passing through the centroid. This is known 

a transfer theorem.  

Transfer theorem: Let the centroid of an area be at point ( x0 y0 ) with respect to the set of axes (xy). Let 

( x' y' ) be a parallel set of axes passing through the centroid. Then  

 

But by definition  

 

which gives  

 

This is how the moment of area of a plane about an axis is related to the moment of the same area 

about another axis parallel to the previous one but passing through the centroid. Similarly it is easily 

shown that  

.  

and  

 

We now solve an example to show the application of this theorem.  

Example 3 : Calculate the second moments and products of area of an ellipse with its centre at (x0 ,y0 )  

In a previous exercise, you have already calculated the second moments and products of area of an 

ellipse about its centre, which is also its centroid. These are:  
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 We use these results now in applying the transfer theorem to obtain moments and products of 

area of the ellipse about a different origin (see figure 8) . Thus  

 

Similarly  

 

Transformation of moments and products of area from one system to another rotated 

with respect to the first one: We just learnt that if we translate an area so that its centriod 

moves to another point, how its second moments of inertia and products of inertia change when 

the axes passing through the centroid and the other set of axes are parallel. We now study how 

the moments and products are related when we calculate them about another set of axes that an 

rotated with respect to the first one. So we consider a set of area (xy) and another on (x'y') 

rotated with respect to the first one by an angle θ (see figure 1).  
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We wish to relate . In lecture 1, we have already learnt 

that  

 

This gives  

 

 

changing  

 

 
Similarly  
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and  

 

=  

=  

 

Thus  

 

This gives the second moment and product about a set of axis (x'y') rotated about the other set 

(xy). Let us now discuss some examples.  

As expected for a circular area, no matter about which set of axes you calculate , 

it will always come out to be the same because the area looks the sum from all set axes. What 

is interesting, however, is that for a square also the moments and product of area are the same 

with respect to any set of axes passing through its centre. It happens because with respect to its 

centre, the IXX and IYY for a square are the same i.e. and . This is left as 

an exercise for you to show.  

We now use for formulae derived above to obtain what we call the principal set of axes for a 

plane area. The principal set of axes at a point are those for which the product of inertia 

vanishes i.e. about the principal set of axes . Let us see how we determine these axes if 

we know about a given set of axes. In the following we refer to the principal 
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set of axes as (1,2) where 1 refers to the x-axis and 2 to the y-axis. We know that we want  

 

where α is the angle the principal set of axes make with the (xy) set of axes. The equation 

above gives  

 

The principal set of axes has one more property: The moments of area is maximum one of the 

principal axis (say x-axis) and minimum about the other (y-axis). This is seen as follow: Since  

 

Let us find θ for which IX'X'   is a maximum or a minimum. The condition  

 

gives  

 

This is the same angle a that makes IXY vanish. This means  

 

Thus  

 

When α makes the function IXX a maximum, the angle makes IYY a minimum. I'll leave 

it for you to show that. Thus the principal set of axes are also those about which the II nd 

moment of area is maximum about one axis and minimum about the other. Notice that for a 

square, any set of axes passing through its centre is a principal set of axes. This follows from 



103 
 

the exercise that you did above. As a related quantity, we also define polar moment of an area . 

This is calculated as  

 

Since r
2 

is independence of the (xy) system chosen, I is the same about any set of axes passing 

through a point.  

Having defined these concepts, at the end I will point out that in a similar manner II
nd

 moment 

of mass can also be defined. We will elaborate on that more in the later lectures on dynamics 

when we deal with the rotation of rigid bodies.  

Lecture 8 and 9 conclude our introduction to the properties of surfaces.  

 Lecture 10  

Method of Virtual Work  

So far when dealing with equilibrium of bodies/trusses etcetera, our strategy has been to isolate 

parts of the system (subsystem) and consider equilibrium of each subsystem under various 

forces: the forces that we apply on the system and those that the surfaces, and other elements of 

the system apply on the subsystem. As the system size grows, the number of subsystems and 

the forces on them becomes very large. The question is can we just focus on the force applied 

to get it directly rather than going through each and every subsystem. The method of virtual 

work provides such a scheme. In this lecture, I will give you a basic introduction to this method 

and solve some examples by applying this method.  

Let us take an example: You must have seen a children's toy as shown in figure 1. It is made of 

many identical bars connected with each other as shown in the figure. One of the lowest bars is 

connected to a fixed pin joint A whereas the other bar is on a pin joint B that can move 

horizontally. It is seen that if the toy is extended vertically, it collapses under its own weight. 

The question is what horizontal force F should we apply at its upper end so that the structure 

does not collapse.  
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To see how many equations do we have to solve in finding F in the structure above, let us take 

a simple version of it, made up of only two bars, and ask how much force F do we need to keep 

it in equilibrium (see figure 2).  

 

Let each bar be of length l and mass m and let the angle between them be θ. The free-body 

diagram of the whole system is shown above. Notice that there are four unknowns - NAx , NAy , 

NBy and F - but only three equilibrium equations: the force equations  
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and the torque equation  

 

So to solve for the forces we will have to look at individual bars. If we look at individual bars, 

we also have to take into account the forces that the pin joining them applies on the bars. This 

introduces two more unknowns N1 and N2 into the problem (see figure 3). However, there are 

three equations for each bar - or equivalently three equations above and three equations for one 

of the bars - so that the total number of equations is also six. Thus we can get all the forces on 

the system.  

 

The free-body diagrams of the two bars are shown in figure 3. To get three more equations, in 

addition to the three above, we can consider equilibrium of any of the two bars. In the present 

case, doing this for the bar pinned at B appears to be easy so we will consider that bar. The 

force equations for this bar give  

 

And taking torque about B , taking N1 = 0 , gives  

 

This then leads to (from the force equation above)  

 

Substituting these in the three equilibrium equations obtained for the entire system gives  
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Looking at the answers carefully reveals that all we are doing by applying the force F is to 

make sure that the bar at pin-joint A is in equilibrium. This bar then keeps the bar at joint B in 

equilibrium by applying on it a force equal to its weight at its centre of gravity.  

The question that arises is if we have many of these bars in a folding toy shown in figure 1, 

how would we calculate F ? This is where the method of virtual work, to be developed in this 

lecture, would come in handy. We will solve this problem later using the method of virtual 

work. So let us now describe the method. First we introduce the terminology to be employed in 

this method.  

1. Degrees of freedom: This is the number of parameters required to describe the system. For 

example a free particle has three degrees of freedom because we require x, y , and z to describe 

its position. On the other hand if it is restricted to move in a plane, its degrees of freedom an 

only two. In the mechanism that we considered above, there is only one degree of freedom 

because angle θ between the bars is sufficient to describe the system. Degrees of freedom are 

reduced by the constraints that are put on the possible motion of a system. These are discussed 

below.  

2. Constraints and constraint forces: Constraints and those conditions that we put on the 

movement of a system so that its motion gets restricted. In other words, a constraint reduces 

the degrees of freedom of a system. Constraint forces are the forces that are applied on a 

system to enforce a constraint. Let us understand these concepts through some examples.  

A particle in free space has three degrees of freedom. However, if we put it on a plane 

horizontal surface without applying any force in the vertical direction, its motion is restricted to 

that plane. Thus now it has only two degrees of freedom. So the constraint in this case is that 

the particle moves on the horizontal surface only. The corresponding force of constraint is the 

normal reaction provided by the surface.  
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As the second example, let us take the case of a vertical pendulum oscillating in a plane (see 

figure 5). Thus its degrees of freedom would be two if there were no more constraints on its 

motion. However, the bob of a pendulum is constrained to move in such a way that its distance 

from the pivot point remains fixed. We have thus introduced one more constraint on its motion 

and therefore the degrees of freedom are reduced by one; a pendulum oscillating in a plane has 

only one degree of freedom. The angle from the equilibrium position is therefore sufficient to 

describe a plane pendulum's motion fully. How about the force of constraint in this case? The 

constraint, that the distance of the bob from the pivot point remains fixed, is ensured by the 

tension in the string. The tension in the string is therefore the force of constraint.  

 

Let us now consider the folding toy shown in figure 1. This structure, although made of many 
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moving bars, has only one degree of freedom because the bars are constrained to move in a 

very specific way. Thus from a large number of degrees of freedom for these bars, all of them 

except one are eliminated by the constraints. As such the number of constraints, and therefore 

the number of constraint forces, is very large. The constraint forces are the reactions at the 

supports A and B and the forces applied by the pins holding the bars together. It is because of 

these forces that the system is restricted in its motion.  

I would like you to note one thing interesting in the examples considered above: if the system 

moves the constraint forces do not do any work on it. In the case of a particle moving on a 

plane, the motion is perpendicular to the normal reaction so it does no work on the particle. In 

the pendulum the motion of the bob is also perpendicular to the tension in the string which is 

the force of constraint. Thus no work is done on the bob by the constraint force. The case of the 

toy in figure 1 is quite interesting. In the structure point A does not move and the motion of 

point B is perpendicular to the reaction force at B. Thus there is no work done by the reaction 

forces at these points. On the other hand, the constraint forces due to pins connecting two bars 

are equal and opposite on each bar. But the points on the bar where these forces act (the points 

where the pin joints are) have the same displacement for each bar so that the net work done by 

the constraint forces vanishes.  

3. Virtual displacement: Given a system in equilibrium, its virtual displacement is imagined 

as follows: Move the system slightly away from its equilibrium position arbitrarily but 

consistent with the constraints. This represents a virtual displacement of the system. Note the 

emphasis on the word imagined. This is because a virtual displacement is not caused by the 

applied forces. Rather it is the difference between the equilibrium position of the system and an 

imagined position - consistent with the constraints - of the system slightly away from the 

equilibrium. For example in the case of a pendulum under equilibrium at an angle θ under a 

force P (see figure 6), virtual displacement would be increasing the angle from θ to ( θ + Δθ) 

keeping the distance of the bob from the pivot unchanged. On the other hand, moving the bob 

with a component in the direction of the string is not a virtual displacement because it will not 

be consistent with the constraint. Virtual displacement is denoted by to distinguish it from a 

real displacement .  
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4. Virtual work: The work done by any force during a virtual displacement is called virtual 

work. It is denoted by . Thus  

 

Note that our previous observation, that work done by a constraint force is usually zero, 

implies that virtual work done by a constraint force is also zero. Also keep in mind that in 

calculating the work done by the force , represents the displacement of the point 

where the force is being applied.  

With these definitions we are now ready to state the principle of virtual work. It is based on the 

assumption that virtual work done by a constraint force is zero. The principle of virtual work 

states that " The necessary and sufficient condition for equilibrium of a mechanical system 

without friction is that the virtual work done by the externally applied forces is zero ". Let us 

see how it arises. For a system in equilibrium, each particle in the system is in equilibrium 

under the influence of externally applied forces and the forces of constraints. Then for the i
th

 

particle  

 

Therefore  
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But we have already seen that for individual particles and for a system 

composed of many subsystems , that is the net virtual work done by 

constraint forces is zero. This means that the total virtual work done by the external forces 

vanishes, i.e.  

 

This is the necessary part of the proof. The condition is also sufficient condition. This is proved 

by showing that if the body is not in equilibrium, the virtual work done by the external forces 

does not vanish for all arbitrary virtual displacements (consistent with the constraints). If the 

body is not in equilibrium, it will move in the direction of the net force on each particle. 

During this real displacement the work don by the force on the i
th

 particle will be positive 

i.e.  

 

Now we can choose this real displacement to be the virtual displacement and find that when 

the body is not in equilibrium, all virtual displacements consistent with the constraints will not 

give zero virtual work. Thus when the system is not in equilibrium  

 

Assuming again that the net work done by the constraint forces is zero, we get that for a body 

not in equilibrium  

 

This implies that when the virtual work done by external forces vanishes, the system must be 

in equilibrium. This proves the sufficiency part of the condition. We now solve some examples 

to illustrate how the method of virtual work is applied.  

   

 Example 1: A pendulum in equilibrium as shown in figure 5. We show the coordinates of the 

bob in the figure 7 below.  
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If the pendulum is give a virtual displacement i.e.  

 

By the principle of virtual work, the total virtual work done by the external forces vanishes at 

equilibrium. So the equilibrium is described by  

 

giving  

 

Which is the same answer as obtained earlier.  

   

Example 2: This is the problem involving two crossed bars as shown in figure 2. We wish to 

calculate the force F required to keep the system in equilibrium using the principle of virtual 

work.  

To apply the principle of virtual work, imagine a virtual displacement consistent with the 

constraint. The only displacement possible - because of only one degree of freedom - is that 
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. From figure 2 it is clear that the external forces on the system are F and 2mg 

(weight of the bars).  

 

As θ increased to θ + Δθ , the point where the bars cross moves down by a distance (see figure 

8)  

 

and the point when F is applied moves to the right by a distance  

 

To calculate the net virtual work done, I remind you that work by a force is calculated by 

taking the dot product , where represents the displacement of the point where the 

force is being applied. Thus the virtual work in the present case is  

 

For equilibrium we equate this to zero to get  

 

which is the same result as obtained earlier.  
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So you see in both these examples that by applying the method of virtual work, we have 

bypassed calculating the constraint forces completely and that is what makes the method easy 

to implement in large systems. The way to learn the method well is to practice as many 

problems as possible. I will now solve some examples to demonstrate the usefulness of the 

method for large system. To start with let us take the example which we gave in the beginning 

- that of toy with made with bars.  

Example 3: If there are N crossings in the folding toy shown in figure 9, what is the force 

required to keep the system in equilibrium?  

 

Again the degree of freedom = 1. The variable we use to describe the position of the 

mechanism is the angle between the bars i.e. θ. As the angle θ is changed to (θ+ Δθ), the upper 

end of the bar where force F is applied moves in the direction opposite to the force by  

 

Thus the virtual work done by F is  

 

On the other hand, the first crossing moves down by  
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The second crossing by  

 

and the Nth crossing moves down by  

All 

these displacements are in the same direction as the force = 2mg at each of the bar crossings. 

Thus the virtual work done by the weight of the mechanism is  

 

This gives a total virtual work done by the external forces to be  

 

Equating this to zero for equilibrium gives  

 

For N = 1 the answer matches with that obtained in the case of only two bars in example 2 

above. For larger N , the force required to keep equilibrium goes up by a factor of N
2
 .  

 

Example 4: A 6m long electric pole of weight W starts falling to one side during rains. It is 

kept from falling by tying a strong rope at its centre of gravity (assumed to be right in the 

middle of the pole) and securing the other end of the rope on ground. All the relevant distances 

are given in figure 10. Assume that the lower end of the pole is like a pin joint. Under these 

conditions we want to find the tension in the rope using the method of virtual work.  
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In this problem also there is only one degree of freedom θ. The constraint is that the pole can 

only rotate about the assumed pin joint at the ground. The constraint forces are the reactions at 

the ground and do no work on the pole when it rotates. There is also the constraint of the 

rigidity of the pole. Extend forces are W and T. By principle of virtual work when θ is changed 

to ( θ + Δ θ ) , the total virtual work vanishes. If the centre of gravity moves up by Δy and to 

the left by Δx as θ is increased to ( θ + Δθ ) , the virtual work done is  

 

which, when equated to zero, gives  

 

From the figure it is easy to see that  

 

and (only the magnitude)  

 

Substituting these in the expression for the tension gives  
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This concludes the lecture on the method of virtual work. In the lecture, I have given you an 

introduction to the method assuming that constraints do no work. The method is really useful 

when there are many constraints and the system is complicated. It makes calculations easier by 

avoiding calculating constraint forces. The method also provides basis for simplifying 

dynamics calculations under constrained motion. You will be learning more about it in an 

advanced course.  

 Lecture 11 

Motion in a plane: Introduction to polar coordinates  

  

So far we have discussed equilibrium of bodies i.e. we have concentrated only on statics. From 

this lecture onwards we learn about the motion of particles and composite bodies and how it is 

affected by the forces applied on the system. Thus we are now starting study of dynamics.  

When we describe the motion of a particle, we specify it by giving its position and velocity as a 

function of time. How the motion changes with time is given by the application of Newton's 

II
nd

 Law. One such particle at position moving with velocity and acted upon by a force 

is shown in figure 1. The force gives rise to an acceleration . Notice that in general 

the position, the velocity and the acceleration are not in the same direction.  
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Each of these vectors is specified by giving its component along a set of conveniently chosen 

axes. For a particle moving in a plane, if we choose the Cartesian coordinate system (x-y axes) 

then the position is given by specifying the coordinates (x, y), velocity by its components 

and acceleration by its components . These are related by the 

relationship  

 

and  

 

These expressions are easily generalized to three dimensions by including the z-component of 

the motion also. However, in this lecture we will be focusing on motion in a plane only. With 

these components the equations of motion to be solved are  

 

Coupled with the initial conditions solutions of these equations provide the velocity and 

position of a particle uniquely. However, the Cartesian system of coordinates is only one way 

of describing the motion of a particle. There arise many situations where describing the motion 
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in some other coordinate system i.e., taking components along some other directions is move 

convenient. One such coordinate system is polar coordinates. In this lecture we discuss the use 

of this system to describe the motion of a particle. To introduce you to polar coordinates and 

how their use may make things easy, we start with the discussion of a particle in a circle.  

Consider a particle is moving with a constant angular speed ω in a circle of radius R centered 

at the origin (see figure 2). Its x and y coordinates are given as  

 

with both x and y being functions of time (see figure 2).  

 

On the other hand, if we choose to give the position of the particle by giving its distance r from 

the origin and the angle Φ that the line from the origin to the particle makes with x-axis in the 

counter-clockwise direction, then the position is given as  
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In this coordinate system, r is a constant and Φ a linear function of time. Thus there is only one 

variable that varies with time whereas the other one remains constant. The motion description 

thus is simpler. These co-ordinates are known as the planar polar coordinates. As 

expected, these coordinates are most useful in describing motion when there is some sort of a 

rotational motion. We will therefore find them useful, for example, in discussing motion of 

planets around the sun rotating bodies and motion of rotating objects.  

 

So to start with let us set up the unit vectors is polar co-ordinates ( r, Φ ) . Given a point , 

the unit vector is in outward radial direction and has magnitude of unity. The Φ unit vector is 

also of magnitude unity and is perpendicular to and in the direction of increasing Φ (see 

figure 3). Obviously the dot product . In term of the unit vectors in x and y direction 

these are given as  

 

As is clear from these expression the direction of and Φ is not fixed but depends on the angle 

Φ. On the other hand, it does not depend on r. If we go along a radius, and Φ remain 

unchanged as we move (recall that two parallel vectors of same magnitude are equal). But that 

is not the case if Φ is changed.  
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The position a of a particle in polar co-ordinates to given by writing  

 

As particle moves about, changes. Does the mean that the velocity  

 

The answer is no. As already discussed is a function of Φ, the angle from the x-axis. Thus as 

a particle moves such that the angle Φ changes with time, the unit vector also changes. Its 

derivative with respect to time is therefore not zero. Thus the correct expression for is  

 

Let us now calculate . As already stated, does not change as one moves radically in or 

out. Thus changes only if Φ changes. Let us now calculate this change (figure 4)  

 

As is clear from the figure  
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where the dot on top of a quantity denotes its time derivative. The expression above can also be 

derived mathematically as follows:  

   

 

Thus the velocity of a particle is given as  

 

We note that the unit vectors in polar coordinates keep changing as the particle moves because 

they are given by the particles current position. Thus even if a particle were moving with a 

constant velocity, the components of velocity along the radial and the directions will change. 

Let us calculate the velocity of a particle moving in a circle with a constant angular speed. For 

such a particle  

 

so the velocity is given as  

 

This is a well known result: the velocity of a particle moving in a circle with a constant angular 

speed is in the tangential direction and its magnitude is Rω. How about the acceleration in 

polar coordinates? This is the derivative of with respect to time. Thus  

 

As was the case with the unit vector , the unit vector also is a function of the polar angle Φ 

and as such changes as the particle moves about. Thus in calculating the acceleration, time 

derivative of also should be taken into account. From figure 4 it is clear that  
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This can also be derived mathematically as  

 

Using this derivative and the chain rule for differentiation, we get  

 

You can see that the expression is a little complicated. The complexity of the expression arises 

because the unit vectors are changing as the particle moves. You can check for yourself that for 

a particle moving with a constant velocity, the expression above will give zero acceleration. 

Despite little complicated expressions for the acceleration, employing polar coordinates 

becomes really useful in situations where motion is circular-like as we will see in two standard 

examples later. Let us first go to one familiar example of a particle moving in a circle for 

which r = R , . This gives  

 

which is the correct answer for the centripetal acceleration. For this reason is known as the 

centripetal term. Let us now solve an example of mechanics using polar co-ordinates.  

Example 1: A bead of mass m can slide without friction on a straight thin wire moving with 

constant angular speed in a horizontal plane (figure 5). If we leave the bead with zero initial 

radial velocity at , we wish to describe its subsequent motion and also find the horizontal 

force applied by the wire on the bead.  
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To see the usefulness of polar coordinates, try to write equations of motion for the bead in the 

Cartesian coordinates. This I leave for you to do. We solve the problem using polar co-

ordinates. Thus at any instant the acceleration is given by the formula  

 

We emphasize that the expression above gives the components of the acceleration along the 

radial and the f directions which are not fixed in space but are changing continuously. It is 

given that (a constant) which also means that . The acceleration of the bead on the 

wire is therefore  

 

Since there is no friction, the wire does not apply any radial force on the bead. Therefore  

 

You can check by substitution that the solution for the equation above is  

 

where A and B are two constants to be determined from the initial conditions. Differentiating 

the equation above gives  

 

Thus acceleration perpendicular to wire is  
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So the horizontal force applied by wire is  

 

Of course because the unit vectors employed change direction continuously, the force above is 

also in different directions at different times with the magnitude given by the expression above. 

To determinate A and B, we substitute t = 0 in the expressions derived for the radius and the 

radial speed and equate them to their vales given at that time. This gives  

 

This leads to the answer  

 

Example 2: A particle, tied to a string, is moving on a smooth frictionless table in a circle of 

radius r0 with an angular speed ω0. The string is pulled in slowly through a hole in the middle 

of the table with constant speed V. We want to find the change in its speed as a function of time 

and also the force required for the string to be pulled (figure 6).  
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The mass, when pulled in, is moving under the influence of an inwardly directed radial force 

. Although the force keeps changing its direction depending upon where the particle is, it 

always remains radial. The expression for the acceleration of the particle in the polar 

coordinates is  

 

Since it is given , which means , and the force is only in direction, we have  

 

Since there is no force component in the Φ direction, we have  

 

Multiply both sides of this equation by r to get  

 

Since , the equation above gives  
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The force pulling the string in is therefore  

 

In solving this example, we see that for forces in radial direction , which is 

nothing by a statement of the conservation of angular momentum. We will discuss it more later 

when we study angular momentum.  

After introducing the planar polar coordinates, we nor briefly describe what are the other 

coordinate systems in three dimensions. A natural extension of planar coordinates in the 

cylindrical coordinate system. This arises when we add the third-z direction to planar polar 

coordinates. See figure 7.  

   

 

The position of a particle is described by with the corresponding unit vectors being 

. In this case the unit vector is a constant and are given as in the planar 

polar co-ordinates so that  
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Thus the expressions for all the quantities are similar to those for planar polar co-ordinates 

except that direction is also added. As a result,  

 

We now introduce another set of coordinates, the spherical polar coordinates, in three 

dimensions. A point in these coordinates is specifically by its distance from the centre r , the 

angle θ that the line joining the point to origin makes with the z-axis and the angle Φ that the 

projection of this line on the (xy) plane makes with the x-axis. Thus a point is specified by 

(see figure 8).  

 

Thus co-ordinates for a point are  
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The unit vectors are given as with  

 

unit vector points in a direction below the (xy) plane making an angle from the (xy) plane. 

So it is given as  

 

And is in the (xy) plane and is given as  

 

which is the same as for planar polar coordinates. As is clear, the unit vectors in this case are 

also position dependent and change as the particle position changes. This affects the expression 

for velocities and acceleration when they are expressed in spherical coordinates.  

Let us evaluate the time derivatives of geometrically. The unit vector does not 

depend on r but changes with θ . This gives  

 

Similarly when θ is fixed and Φ changes, we get  

 

When we combine the two results we get  

 

which gives  

 

Thus the expression for velocity in spherical coordinates is  
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We leave the calculation of and the acceleration as an exercise. We end this brief 

introduction to spherical coordinates by noting that spherical polar coordinates can be those of 

as two plane polar coordinates systems : one the plane of radius vector and the z-axis with 

as planar coordinates and the other the (xy) plane with as the planar polar 

coordinates.  

Lecture 12 

Motion with constraints  

  

In this lecture we are going to deal with motion of particles when they move under constraints 

applied on their motion. Of course the motion is determined by Newton 's second law i.e., by 

solving the equation of motion  

 

where is the total force – which is the sum of the externally applied and those arising from 

other particles as well as the constraints in the system - acting on a body of mass m and is 

producing an acceleration . Recall from lecture 9 that constraints are the restrictions 

applied on the movement of a body by various means and are brought about by constraint 

forces . For example, I may restrict the body to move along a straight wire (see figure 1). In 

that case the component of only along the wire will affect the motion of the mass (if there is 

no friction) and its perpendicular component will be nullified by the normal reaction of the 

wire, which is the constraint force in this case. As another common example of constrained 

motion take the motion of two masses at the end of a rope going over a frictionless pulley 

(Atwood's machine) also shown in figure 1.  
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In this case also, the motion of one mass is determined by not only by the gravitational force on 

it alone but also by the weight of the other mass. Thus the two masses are not fully free to 

move under their own weight and the motion is constrained. The constrained is brought about 

through tension in the rope, which is then the constraint force.  

We have seen two simple examples of constrained motion. We make an observation that 

constraints can be caused either by restricting the motion externally, as was the case for a mass 

on a wire, or by the presence of other bodies that are themselves moving, as in the example of 

two masses over a pulley. In lecture 9 we had introduced these concepts and stopped at that. 

However, for obtaining the positions and velocities of particles under constraints, we wish to 

express these constraints mathematically and account for them while solving the equations of 

motion. This is what this lecture is going to be about.  

Let us start with the example of a mass on a straight wire (say in x direction). The constraint 

that the mass moves only in the x-direction is equivalent to saying that  

 

This is how we mathematically express the constraint that the mass moves only along the x-

axis. As pointed out earlier, to keep the y and the z coordinates of the mass unchanged, the 

wire applied a normal force on the mass to cancel the perpendicular (to the wire) component of 

the applied force so that the net force is along the wire. This normal reaction is the constraint 

force (figure 2). Notice that all that the wire does to the mass, as far as its motion is concerned, 

is represented by this force.  
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.  

To study the motion of the mass all I need to look at are only the forces – external and 

constraint forces - acting on the mass. In this case the wire is represented by the normal force 

that it applies. Recall from lecture 4 that such a diagram is called a free-body diagram . The 

advantage of drawing a free-body diagram is that it identifies the relevant quantities to write 

the equation of motion. In the present case the free-body diagram of the mass is given in figure 

3.  

 

Let us now write the equations of motion for the body in terms of its x, y and z -components :  
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Let us count how many unknown are there? The unknowns are x , y , z , Ny , and Nz , 

numbering five ( is given). But there are only three equations. How do we find the other two 

equations? For this recall that the two of the unknowns, Nx and Ny , arise because of the 

constraints. And it is these constraints that provide the two more equations needed for a 

solution. The constraints that y = constant and z = constant imply that  

 

With these two additional equations, we now have five equations and five unknowns. Thus and 

we can solve for x , y , z and Nx and Ny in terms of given parameters of the problem.  

Let us now look at the other problem of two masses hanging on the sides of a frictionless 

pulley (see figure 1), a special case of Atwood's Machine. For simplicity we take the pulley 

and the rope to be massless. Let the masses be m1 & m2 . In this problem also the motion is in 

only one direction i.e. the vertical direction so we are going to ignore the other two dimensions. 

In this problem the constraint is that the two masses move together and it is effected by the 

rope. As noted above, the force of constraint therefore is the tension T in the rope. Let us now 

make their free-body diagrams for the two moving masses m1 and m2. We measure all 

distances from the ground and let the distance of m1 be y1 and that of m2 is y2 . Please see figure 

4.  
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Equation of motion for m1 and m2 are  

 

The tension T is the same on both sides because rope and pulley both are massless and the 

pulley is also frictionless. These are two equations and there are three unknowns: y1 , y2 and T . 

The tension T arises because of constraint so the constraint itself provides the desired third 

equation. In this case the constraint is that the length of the rope is constant. This can be 

expressed mathematically as (see figure 4 for meaning of symbols)  

 

where R is the radius of the pulley. Differentiating this equation twice with respect to time 

gives  

 

We now have three equations for three unknowns:  
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Solving these equations gives  

 

a result that you already know. Thus if m2 >m1, m1 accelerates up.  

Through these two simple examples, I have identified sequential steps that we take in solving a 

problem involving constraints I now summarize these steps:  

   

1. Identify the constraints and forces of constraints in the given problem;  

2. Make free body diagrams of different bodies taking part in the motion. Let me remind 

you in making free body diagram take the body and show all the forces - applied and 

those of constraints - on the body;  

3. Write equations of motion for each subsystem/body. At this stage the number of 

equations will be less than the number of variables in the problem;  

4. Write the constraint equations. They will provide the missing equations (This happens 

because each constraint introduces a constraint force which becomes the additional 

unknown);  

5. Solve the equations.  

Let us us now apply the procedure outlined above to slightly more difficult examples.  

   

Example 1: There are three massless and frictionless pulleys P1, P2 and P3. P1 and P2 are 

fixed and P3 can move up and down, as shown in figure 5. A massless rope R1 passes over the 

pulleys as shown and two masses m1 and m2 attached at its ends. A third mass m3 is hanging 

from P3 by a rope R2 of fixed length. Find the acceleration of the three masses.  
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In figure 5 we have also shown the distances of different pulleys and masses from the ground, 

with the vertically up direction taken to be positive. The heights h1 and h2 of pulleys P1 and P2, 

respectively, are fixed whereas height yp of pulley P3 can change. We go about solving the 

problem according to the steps given above.  

Step 1: We identify two constraints and the forces of constraints as: rope R1 has fixed length 

with the force of constraint being tension T1 in the rope. The other constraint is that rope R2 

has fixed length with the tension T2 in the rope as the constraint force. Because of massless 

pulleys and ropes and frictionless surfaces T1 is the same throughout rope R1.  

Step 2 : Make free-body diagrams of the subsystems. We consider only those subsystems that 

can move. Thus we make free-body diagram of each mass and the pulley P3 as shown in figure 

6.  
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Step 3 : By looking at the free-body diagrams, write equations of motion for each subsystem. 

In terms of the distances shown in figure 5, we get  

 

and because the pulley is massless  

 

Thus equations of motion give four equations. However there are six unknowns viz. 

. Their number exceeds the number of equations obtained so far by 

two.  

Step 4 : The additional two equations are provided by the constraint equations. The constraint 

that rope R1 is of fixed length is expressed as (see figure 5 for the variables used)  
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Differentiating this equation twice with respect to time gives  

 

The second constraint that rope R2 is of fixed is equivalent to  

 

which upon differentiating gives  

 

Thus the equations that describe the motion of the system fully are:  

 

I will leave Step 5 – that is solving the equations - for you to do but give you partial answer. It 

is  

 

I would now like you to try a similar problem but with slight difference. Let us attach the 

centre of the third pulley to a spring of spring constant k (see figure 7). Then find the equations 

of motion for the two masses and solve them.  
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Example 2 : As another example of constrained motion we take a small block of mass m 

sliding down on a cylindrical surface from its top (figure 8). The question we ask is at what 

angle from the horizontal would the mass slide off the surface of the cylinder.  
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Since this problem involves motion along a circular path I would use planar polar coordinates. 

I take the origin at the centre of the cylinder and let the x-axis be along the horizontal and y-

axis along the vertical. Assume that the radius of the cylinder is R . The constraint in this 

problem is that r  = constant = R. The corresponding constraint force is the normal reaction N 

of the cylindrical surface on the block. The free-body diagram of the mass on the cylinder is 

shown in figure 9.  

 

We now write the equations of motion in the planar polar coordinates. That gives in the 

direction  

 

and in the direction  

 

We again have three variables but only two equations. The third equation is 

provided by the equation of constraint i.e.  

r = constant = R  

which gives  
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With this the equations to be solved are  

 

To solve these we use  

 

Substituting this in the equation for above gives  

 

This when substituted in the equation for leads to  

 

The point when the mass slips off the cylinder is where N becomes zero. So the corresponding 

is given by  

 

   

Example 3: Let us take one more example of constrained motion when two bodies are 

involved. I put a block of mass m on a wedge of mass M with wedge angle θ (see figure 10). 

The wedge is free to move on a frictionless plane. There is no friction also between m and M . 

We wish to find the resulting motion.  



141 
 

 

There are clearly two subsystems, the masses m and M . There are two constraints in the 

system. Constraint one is that the mass m moves along the edge of the wedge so its x and y 

components are not independent. The other constraint is that the wedge moves only in the x 

direction. The constraint forces are obviously the normal reaction N1 on mass m by the wedge 

and the normal reaction N2 on the wedge by the ground. The free-body diagrams for the two 

subsystems are as shown in figure 11.  

 

Notice that in the free-body diagram of the wedge, there is no mg of block. It is all accounted 

for by N1. To set up the equations of motion, let us choose our co-ordinates system a follows 

(see figure 12): Let the coordinate of the right-hand side lower corner of the wedge be given 

the co-ordinates (x1 y1 ) and let the co-ordinates of the block be (x2 y2 ).  



142 
 

 

The equations of motion in terms of these coordinates are:  

 

For the six variables - - of the system, we need two more equations, 

which are provided by the constraints equations. These are  

 

and  

 

which gives  

 

Thus the equations to be solved are  

 

These equations can now be solved to get all the variables as a function of time. That task is 

left for you. I'll leave you with answers for N1 :  

Lecture 13 
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Motion with friction and drag  

 

We have been looking at the constrained motion of particles and found that in solving the 

problems we make free-body diagrams and look at the motion of each subsystem 

independently. Then the motion of individual subsystem is linked through constraints that they 

impose on each other. The example that we took were Atwood's machine and a mass sliding on 

a wedge. However, in these examples we neglected a ubiquitous force which is the force of 

friction. In this lecture we take this into account and solve problems involving the friction  

We would take into account two kinds of frictional forces - one that arises when two solid 

bodies are in contact and the other that arises when a body is moving through a liquid, the 

viscous force. Let us first consider the case when two solid bodies are moving against each 

other. A detailed discussion about the nature of frictional force and its relationship with the 

normal reaction has already been presented in lecture 6. We start with a review of the main 

points discussed there.  

If there is a tendency between two bodies to slide against each other, or if one body is sliding 

over a surface, the friction between the two bodies resists this motion. Question is whether this 

is a constant force or adjusts itself. It is experimentally observed that the maximum frictional 

force that a surface can apply on an object is  

 

where N is the normal reaction of the surface on the body and µ is the coefficient of friction; its 

value is different for the static and dynamic case. Thus there are two coefficients of friction 

between two surfaces: static coefficient of static friction µs and the coefficient of dynamic 

friction µk, with the latter being smaller than the former. Further, µs is always observed to be 

less than 1. And the direction of frictional force is such that it opposes the motion or the 

tendency to move 

Let us now take a couple of standard examples involving friction similar to those solved in 

lecture 6.  

   

Example 1: We put a block of 5kg on top a 10kg block. They are then attached through a 

massless and frictionless pulley to a mass M as shown in figure 1. The coefficient of friction 

between all surfaces for both static and dynamic friction is 0.5. What is the acceleration for (a) 

M = 20kg and (b) M = 40kg ( g = 9.8m/s
2
 )?  
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What we should see in solution of this problem is the maximum possible acceleration that the 

5kg block can have, and then solve for the mass M0 that will give this acceleration for both the 

5kg and the 10kg blocks. If M is less than M0, both the blocks will move together. On the other 

hand, if M exceeds M0, the blocks will slip on each other.  

To start the calculations I show in figure 2 the free body diagrams of all the masses with 

maximum possible friction  
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Looking at the 5kg block, we see that  

 

The maximum possible acceleration for the 5kg mass is  

 

Let me now calculate M0 corresponding to this acceleration. The corresponding equations for 

the 10kg block are  

 

The equation of motion for the mass M then gives M0 as follows  

 

Now I answer the question asked in the problem.  

(a) For 20 kg mass, let the friction between the blocks be f. Then we have  

 

These equations lead to the acceleration of the system as follows  

 

(b) M = 40kg. Although I have already shown you that in this case the two blocks will slide on 

each other. Let me show this to you again in another way. Assume that the blocks move 

together. In that case the acceleration of the assembly will be  

 

But this is larger than the maximum possible acceleration for the 5kg block, so the assembly 

cannot move together. Under these conditions the equations for the 10kg block and the mass M 

are  

 

which gives  
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The 5kg mass of course moves with acceleration of only 4.9ms
- 2

 .  

   

Example 2: As the second example let me take a hollow cylinder that is rotating about its axis 

with a constant angular speed ω . Because of this rotation a mass m on the wall of the cylinder 

does not slip down (see figure 3). If the coefficient of friction between the cylinder wall and 

the mass is µ, what is the minimum value of w for this to happen?  

 

For the mass not to slip, the maximum possible friction on it should be greater than the actual 

frictional force that holds it against its weight. Since the problem involves rotation we will use 

cylindrical coordinates. The free body diagram of the mass is as given in figure 3. The mass m 

experiences three forces when it is stuck to the wall of the cylinder. These forces are its weight 

mg, the normal reaction N of the cylinder and the frictional force f . In cylindrical coordinates 

the acceleration of the mass is  

 

so that  

 

Now  
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which gives  

 

From this minimum angular speed ωmin is calculated as follows.  

 

Thus .  

So far we have discussed one kind of frictional force where two solid bodies are in contact. We 

now learn to deal with the drag force which is experienced when a body is moving through gas 

or a liquid. This force arises due to viscosity of the fluid. To the lowest order in the velocity 

of the moving body, the drag force is approximated by  

  

 

that is, it is a force in the direction opposite to the velocity and its magnitude is proportional to 

the speed. So the equation of motion in presence of drag force will read  

 

If we write it in its component form we have  

 

These formulae are valid when the speed of the object is not very large; at large speeds the 

drag force becomes proportional to the square of the velocity. The simplest example of the 

effect of drag is the falling raindrops. Although falling from great heights, they do not hit us 
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with very large speed because of the drag force on them.  

As an object falls vertically through a liquid/gas, the drag force on it increases with its speed. 

At a certain speed - when the drag force equals the weight of the object - it stops accelerating 

further and therefore moves with a constant speed. This speed is known as the terminal speed 

or terminal velocity. Assuming drag force to be linearly dependent on velocity, let us estimate 

the terminal speed of an object when it falls through a liquid of viscosity η. Let the vertically 

downward direction be y, then  

 

But the object will stop accelerating, i.e. , after attaining the terminal speed. Thus at the 

terminal speed  

 

which gives  

 

That is the terminal speed of the object. To estimate the terminal speed we need to know what 

k is. For a spherical object of radius a moving with low speeds, stokes formula gives the drag 

force to be  

 

If the object is made of a material of density ρ, the terminal speed comes out to be  

 

Let us estimate what will be the terminal speed of a rain drop of 2mm radius. With the 

viscosity of air , we get  

 

This is too high compared to the observed speeds of about 20 kmph to 5 kmph. Obviously the 

dependence of drag force on raindrops has higher power dependence on their speeds. In this 

lecture we will however restrict ourselves to those cases where the drag force depends linearly 

on the speed i.e. . We now solve examples involving such drag force.  
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Example 3 : An object is thrown in a fluid with initial speed v0. Find its speed and the distance 

traveled by it as a function of time.  

Assuming the motion to be in x direction, the equation of motion is  

 

You can easily check that the solution is  

 

So that the speed initially is v0 and it decreases exponentially with time. The plot of speed 

versus time looks like that given below  

 

 

What about the distance traveled by the object? That is obtained by integrating the speed with 

respect to time and is  

 

So that the distance traveled looks like  
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Thus as , the body will stop after traveling a distance of  

 

Of course as , the distance becomes larger and larger.  

   

Example 4 : We now consider one-dimensional motion of a particle which is moving under 

the influence of a constant applied force in a medium applying a drag force. Motion of a 

particle thrown up or falling down is one such example. The equation of motion in this case is  

 

Let us take the force to be F and the initial speed of the particle to be zero. Without the term 

on the right-hand side, the solution of the equation above was which is, in 

the language of differential equations, the solution of the homogeneous equation i.e., equation 

with 0 on the right-hand side. To get the general solution, we add to the homogeneous solution 

the particular solution corresponding to . The particular solution is  

 

So that the general solution for the velocity is  
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Here v0 is some constant (not the initial velocity, which is given to be 0). If we start with 

we get  

 

which gives  

 

The plot of velocity versus time looks as follows  

 

  

with the terminal speed being . The next question we ask if the solution goes to the standard 

solution of particle moving with a constant acceleration when k=0. From 

we get an answer of 0/0 so we have to be careful in taking k = 0 . Recall 

that the solution was obtained by assuming k ≠ 0 because we have been dividing by k . Thus 

for the k=0 case we should take the limit of k → 0 . Doing that we find  
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Now k → 0 gives which is the correct answer. We now calculate the distance x(t) 

traveled by the object as a function of time.  

 

You can see that t → ∞ the distance is given as  

 

so at large times it increases linearly with the terminal speed.  

For t → 0 it is  

 

This is easily understood as initially there is no drag due to small initial speed and the distance 

is given by the formula for uniform acceleration. Combining the two limiting cases we see that 

the plot of x(t) versus time looks like  
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I'll leave it as an exercise that as k → 0 , we recover the familiar result Also I 

would like you to solve for the velocity and height of a ball thrown up with an initial speed v 0 

when drag of air is taken into account.  

Next we analyze the effect of drag on the projectile motion in the gravitational field. In this 

case, we have a projectile shot with initial speed v0 at an angle θ0 from the horizontal and we 

want to find to subsequent motion. The equations of motion are (taking vertically up direction 

as the y-direction)  

 

We have already solved these equations above, so the speed and distance in the x-direction is 

given as  

 

The equation of motion in the y-direction is  
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Its solution with the initial condition is  

 

I give you an exercise now: find at what time s ? Show that this time correctly goes to 

when k = 0 . Integrating the speed, we get the height y(t) as a function of time. It is 

given as  

 

Now to get the trajectory one calculates x(t) and y(t) separately and plots y versus x . I give you 

some of these for a given but varying k. We take v0 = 100m/s and θ0 = 45º . For no drag 

situation we get the range R = 1010m and the highest point of the projectile to be at h = 254m . 

When a drag coefficient of k = 0.1 is introduced we get R = 495m and h = 175m , a reduction 

of about 50% in the range and 30% in the height. For k = 0.2 we get R = 313m and h = 135m, 

giving a further reduction of about 40% in the range and 20% in the height from the 

corresponding k = 0.1 values. Notice when drag force is introduced, the range gets affected 

much more than the height. The corresponding trajectories are shown below.  

   

One interesting question we may ask is: for zero drag the maximum range is obtained for θ = 

45º. If we include drag, should the angle be larger than or less than 45º for obtaining maximum 

range? Since x-component of the velocity is now decreasing one intuitively feels that the 

projectile should be given larger speed in the x-direction for maximum range. Thus the 

projectile should be fired at an angle less than 45º. This is easily understood from the 

calculations presented above. As we saw in those calculations, for k ≠ 0 the motion in y 

direction does not get affected as much as it does in the x-direction. This also suggests that for 

maximum range we fire the projectile at an angle slightly less than 45º giving it a lager velocity 

in x-direction. One can also think of it slightly differently. When the particle is shot up drag 

force is large (because of the initial speed) and also both the gravitational force and drag are 

working in the same direction. So the partial takes longer to move up the same height than it 

does in coming down. Since x-velocity is larger in the beginning, the projectile should cover as 

much distance as possible while ascending than when it is coming down (the x-component may 

well vanish by that time) This implies that θ0 should be smaller than 45º.  

What we have done so far is to include the simplest form of drag force in solving for the 

trajectories of motion. However, as the speed increases drag force may also include higher 

powers of velocity i.e. it may take the form  
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where is the unit vector in the direction of the velocity. This is written here to show that force 

is opposite to the velocity vector. In such cases the corresponding differential equation become 

non-linear in v and getting the solution becomes difficult, necessitating the use of numerical 

methods. Some problems though do allow analytic solutions. I end this lecture by giving you 

one such problem to solve.  

Exercise : Throw a ball up will initial velocity and let the force of drag be . Find the 

final speed of the ball when it hits the ground. Also find the height that it goes up to.  

Lecture 14 

Momentum  

So far we have dealt with motion of single particles. Now we are going to make the situation 

slightly more difficult by letting two or more particles apply forces on one another either by 

coming in contact or from a distance, and see how we can describe their motion. In such a 

situation the motion become much more interesting. Let us take an example of only two 

particles interacting through a spring connected to them, as shown below.  

 

During their motion any of the following could take place: the distance between them may 

change,  

 

or their orientation may change,  

     

 

or a combination of both these may occur. Now we wish to develop methods of dealing with 

such situations. We do this gradually by taking one step at a time. In this regard, we start by 

introducing the quantity momentum that plays a very important role in describing motion when 
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more than one point particle are involved in the motion.  

To understand the importance of momentum, let us do the following experiment. Take a cart 

moving on a frictionless horizontal plane and start putting mass into it; it may be dropped 

vertically in it (see figure 1 below).  

 

You will see that the cart starts slowing down. If we wish to keep it moving with the same 

velocity, we find that we have to apply a force on it  

 

Compare this with the standard form of Newton's II
nd

 law where we put  

 

So we see that whether the mass is changed and the velocity kept constant, or the velocity is 

changed and the mass is kept constant, we have to apply a force to a body. Thus in general  

 

(We have ignored the second-order term   right now assuming that both the mass and 

the velocity are varying continuously). Therefore  
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and this defines for us a quality called the momentum denoted above by . By definition  

 

The force applied on a body or a system of particles is then the rate of change of their total 

momentum, i.e.  

 

where now refers to the momentum of the system made up of a collection of particles. In the 

example taken above, we have to apply a force to keep the cart moving with a constant velocity 

because as the mass falls in the cart and starts moving with same velocity as the cart, the total 

momentum of the system - the cart and the mass in it - increases. In writing the definition of 

the momentum above, we have implicitly assumed that all the particles of the system, with 

total mass M, are moving with the same velocity. However, if the system is made up of N 

particles, each one being of different mass mi (i = 1 to N) and also moving with a different 

velocity , the total momentum of the system will be given as  

 

A fundamental property of momentum is now follows from the definition of force in terms of 

momentum. If the total force acting on a system of particles is zero, the total momentum of the 

system does not change with time. To see it clearly let us go back to the two particles 

connected by a spring (see figure 2 below). There we have  

 

for particle 1 and  

 

for particle 2. Here is the force on particle 1 applied by particle 2. Similarly is the force 

on particle 2 applied by particle 1. By Newton 's third law  
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This immediately results in  

 

So no matter how these particles move - their individual velocities or may change - but as 

long as there is no other force on the system and Newton's third law is obeyed we are going to 

have  

 

The equation above expresses the principle of momentum conservation - which is a 

fundamental principle of physics - in its simplest form.  

Let us understand this result. If we consider both the particles together as one system, indicated 

by the dashed line enclosing them in the figure above, there is no force on this system. This is 

because although each particle is acted upon by a force applied by the other particle, on the 

system as a whole these two forces act in opposite directions and cancel each other, resulting in 

a zero net force on the system. As such the momentum of the system does not change. Thus we 

conclude: If the net force acting upon a system of two particles vanishes, their total 

momentum does not change with time . Let us now see what happens when we apply forces 

on each particle also. In that case we have  
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which gives  

 

Again we see that no matter how the individual velocities change, the total momentum changes 

according to the equation  

 

Let us now generalize this result to a system of many particles (say N ). Then we have for the 

i
th

 particle  

 

Where is the external force on the i
th

 particle and is the force applied on i
th

 particle due 

to j
th

 particle. Summing it over i gives  

 

Now we can write  

 

But by Newton 's third law which when substituted in the equation above gives  
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i.e., the total momentum of a system of particles changes due to only the net outside force 

applied on the system; the interaction between particles does not affect their total momentum. 

And if i.e., there is no external force on the system,  

 

which means that the total momentum of the system is a constant. That is the statement of 

conservation of momentum. We will see later that when combined with the principle of 

conservation of energy, it becomes a powerful tool for solving problem in mechanics. For the 

time being let us use this principle to develop some intuitive feeling about motion of a 

collection of particles; looking at it as a single mass.  

We now introduce you to the concept of the centre of mass (CM). To do this, let us look at the 

equation of motion  

 

which is equivalent to  

 

Since total mass of a collection of particles remains the same, we can divide and multiply the 

left-hand side of the equation above by the total mass to rewrite it as  

 

Since , where is the position of the i
th

 particle, the above equation can also be written 

as  
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Now we introduce the position vector for the centre of mass by writing  

 

so that the equation of motion looks as follows  

 

Now we interpret this equation: It says that irrespective of the interaction between the particles 

and their relative motion, the centre of mass of a collection of particles would always move as 

if it were a point particle of total mass M moving under the influence of the sum of externally 

applied forces on each particle, i.e., the total external force. I caution you that the equation 

above does not imply that all the particles are moving the same way. All it says is that they 

move in such a way that the motion of their CM is described as if the CM was a particle of 

mass M.  

Let us take an example.  

 

Example 1: Suppose a bomb dropping vertically down explodes in mid air and breaks into 

three parts. Let the mass of the bomb be m and those of three pieces , 

respectively. If the heaviest piece falls 10m to the east and the lightest piece 12m south of 

where the unexploded bomb would have dropped, where does the third piece fall?  

Since the CM keeps on moving - even after the bomb breaks - vertically 

down as if it were a point mass of mass M falling under gravity. Thus the CM hits the ground 

where the unexploded bomb would have fallen. Let us take this point to be the origin with east 

side being the positive x-axis and the north side the positive y-axis. Then 

after the bomb pieces having moved for equal times. By 

definition of the centre of mass we have  

 

With , this gives  

 

Relative positions of the three pieces are shown in figure 3 below, with the centre of mass at 
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the origin.  

 

You see that having the knowledge about the position of the other two pieces, we have got the 

position of the third piece without the knowing anything about the forces generated during the 

explosion and therefore without solving any equation of motion. That is the power of the 

momentum conservation principle. I will leave it for you to think which component of 

momentum is conserved in this case. Would that component be conserved if drag force were 

included?  

Other familiar examples of momentum conservation are a gun recoiling when fired, two 

persons on roller seats pushing each other and consequently moving away from each other. 

Look around and you will find many such examples of momentum conservation.  

I now discuss a little about calculation of the centre of mass of a mass distribution. Calculation 

of the centre of mass is similar to calculating the centroid of an area (lecture 7), except that the 

area is now replaced by mass. For finite masses at given positions, the definition of centre of 

mass given above is used directly. For a mass distribution in three-dimensions, we calculate all 

three components of the poison of the centre of mass. These are given as  

 

where dm is a small mass element at the position (x,y,z) in the mass distribution (see figure 4 

below).  
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We are now going to change the topic a bit and ask how we describe a system where a large 

force acts for very short durations. A cricket bat striking a ball, a hammer hitting a nail, a 

person jumping on a floor and coming to sudden stop and a carom striker hitting a coin, or 

collisions in general, are examples of such forces in operation. In these cases it is not 

meaningful to talk about the force as a function of time because the time span over which the 

force acts is very-very short. Further, the force varies a great deal over this short time-interval, 

as I show in an example below. It is therefore better to describe the overall impact of the force 

in terms of the momentum change it causes to the system. This is given by the integral of the 

force over the time that it operates. Thus describes the effect of the force on the 

system. The integral is known as the impulse and denoted by the symbol J. Obviously 

the momentum change of a system equals the impulse given to it. We now discuss these ideas 

with the help of an example, that of a ball hitting a wall or any other hard surface.  

Let us ask what happens when a ball hits a wall or we jump on the floor. If the ball hitting the 

wall reflects back, that means that the wall has applied a force on the ball so that  

 

If the time of contact between the ball and the wall is seconds then the average force is  
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But the real force varies greatly from the average force. We show that now. Take the model of 

the ball as following Hooke's law so that if it is compressed by x by the wall, it applies a force 

kx on the wall and consequently experiences an equal force in the opposite direction (see figure 

5 below).  

 

Since the force on the ball follows Hooke's law, the ball performs a simple harmonic motion, 

its compression is given by , where A is the maximum compression and . 

From time t = 0 , when the ball comes in and touches the wall, it takes   time (half a 

cycle) before leaving the wall. The force during this time is given as  

 

Since for a hard ball k is very large, . So by the time the ball comes back, the 

force varies with time as shown in the figure 6 below. Here the maximum force Fmax is given 

by kA and . In the figure we show both Fmax and Faverage . The latter is calculated as  

 

or  
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So you see that over this short period force varies a great deal and is hardly ever near the 

average force that we calculated. The discussion above has been in terms of a model of the 

force; the exact force will be different this model and so the variation could be even larger than 

that shown. It is in such situations, when a strong force is applied over a very short time period, 

that it is much more meaningful to talk of the total momentum change of a particle than the 

force . Further, in such cases, we generally observe only the initial & final 

momentum and are hardly concerned about the finer details. It is this change  

 

In the momentum that is known as the impulse. So in the ball rebounding from a hard surface 

with the same speed as it comes in with, the impulse is , where is the initial 

momentum of the ball. So instead of talking of the force applied by the ball on the surface, we 

say that the ball has imparted momentum to the surface it hit. The amount of momentum 

transferred is equal to the impulse. This has interesting application in calculating the force on a 

surface when there are many-many particles continuously hitting a surface, for example 

molecules in a vessel hitting its walls from inside.  

We show two situations in figure 7 below. The upper figure shows the variation of force on a 

wall when particles hit a surface at some time interval. The lower one, on the other hand, 
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shows the situation when particles hit continuously. In the first case the force on the surface 

due to the particles hitting it varies pretty much like the force due to each particle itself. In the 

second case, however, the force at any instant is given as the sum of the forces applied by each 

particle at that time. This gives an almost constant force Fmany  as shown in the figure. The 

value of this force is calculated as follows. Let each particle hitting the surface impart an 

impulse J to it. If on an average there are n particles per second hitting the surface, then in time 

Δt the momentum transferred to the surface will be (nΔt)J. The force Fmany  will then be given 

as  

 

Since , the force above can also be written as  

 

Thus when a stream of particles hits a surface, the force applied by them to the surface equals 

the number of particles striking in time Δt times the average force applied by each one of 

them, a result that you could have anticipated. This is precisely what happens when a jet of 

water or flowing mass hits another object.  
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As an example let us calculate the pressure of a gas filled in a container. Let the mass of each 

molecule be m and let their average speed be v . The number density of the molecules in the 

gas is taken to be n . Now consider a surface of the container perpendicular to the x-axis. (see 

figure 8).  
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Each molecule, when reflected from the wall imparts a momentum equal to 2mvx to the wall. 

The average number of molecules hitting are A of the wall per unit time will be half of those 

contained in a cylinder of base area A and height vx (the other half will be moving in the other 

direction). This comes out to be . Thus from the formula derived above the force on the 

wall applied by these molecules is  

 

which gives the pressure  

 

This is a result you are already familiar with kinetic theory of gases. But now you know how it 

comes out. Having done this problem we now deal with another very interesting application of 

the momentum-force relationship, known as the variable mass problem.  

So far we have been dealing with particles of fixed masses. Let us now apply the equation 

  to a problem when the mass of the system under consideration varies with time. 

The most famous example of this is the rocket propulsion.  
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Let a rocket with mass M at time t be moving with velocity . A small mass Δm with velocity 

comes and gets stuck with it so that the rocket now has mass M + Δm and moves with a 

velocity (see figure 9 below) after a time interval of Δt. We want to find at what rate 

does the velocity of the rocket increase? We point out that the word rocket has been used here 

to represent any system with variable mass .  

 

Let us write the momentum change in time interval Δt and equate this to the total external force 

on the system (that is the sum of external forces acting on M and Δm) times Δt. That gives  

 

is nothing but the relative velocity of the mass Δm with respect to the rocket.  

Dividing both sides of the equation above by Δt then leads to  

 

We now let Δt → 0 . In this limit also goes to zero for continuously varying mass. 

Further, , the rate of change of the mass of the rocket. Thus the equation for the 

velocity of a rocket is  
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Note that both the mass and velocity are now functions of time. For a rocket 

so that . It is this term that provides the thrust to the rocket. As 

pointed out above, although this equation has been derived keeping rocket in mind, it is true 

for any system with variable mass .  

   

Example: We now solve a simple problem involving the rocket equation. A rocket is fired 

vertically up in a gravitational field. What is its final velocity assuming that the rate of exhaust 

and its relative velocity remain unchanged during the lift off?  

The motion of rocket is one-dimensional. We take the vertically up direction to be positive. 

Then we have where u is a positive number. Therefore the rocket equation takes the 

form  

 

which gives  

 

Here we have taken the initial time and initial velocity both to be zero. Even after the fuel has 

all been burnt, we see if we observe the rocket time t after being fired, its velocity will be given 

by the formula  

 

assuming g to be a constant.  

Finally, although the momentum-force equation can provide answers for the velocities, I would 

like to urge you to always think about how the internal forces that generate momenta in 

opposite directions are generated. That helps in understanding the underlying physics better. 
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For example in the rocket problems, we say that provides the thrust to make the rocket 

move forward. But think about what generates this force? The answer is as follows. In a closed 

container, gas pressure applies force in all directions and these forces cancel each other. But 

when a hole is made from where the gas can escape, the force in the opposite direction is 

unbalanced; and that is what makes the rocket move. If you understand this, you should e able 

to answer the following question. If we take a closed box with vacuum inside and punch a hole 

in it. Which way will it move?  

We conclude this lecture by summarizing what we have learnt. We studied the conservation of 

momentum and a related concept of the centre of mass. Using momentum, we then calculated 

the force on a surface being hit by a stream of particles, or jet of water. Finally we learnt about 

the variable mass problem and applied it to a rocket taking off. In the coming lecture we will 

use the conservation of momentum principle along with the conservation of energy and see 

how this combination becomes a powerful tool in solving mechanics problems.  

Lecture 15 & 16  

Work and Energy  

You have been studying in your school that we do work when we apply force on a body and 

move it. Thus performing work involves both the application of a force as well as displacement 

of the body. We will now see how this definition comes about naturally when we eliminate 

time from the equation of motion.  

The question that immediately comes to mind is why should we eliminate time from the 

equation of motion. This is because when we follow the motion of a particle, we are usually 

interested in velocity as a function of position. Secondly, if we write the equation of motion in 

terms of time derivatives, it may make the equation difficult to solve. In such cases eliminating 

time from the equation of motion helps in solving the equation. Let us see this through an 

example.  

 

Example: Consider the motion of a particle in a gravitational field of mass M . Gravitational 

force on a mass m is in the radial direction and is given as  

 

Since the force in the radial direction, it is better to write the equation of motion in spherical 

polar coordinates. For simplicity we consider the motion only along the radial direction so that 

the equation of motion is written as  
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As you can see, integrating this equation to get r(t) as a function of time is very difficult.  

On the other hand, let us eliminate time from the equation by using chain rule of differentiation 

to get  

,  

where   is the velocity in the radial direction. This changes the equation of motion to  

 

This equation is very easy to integrate and gives as a function of r, which can hopefully 

be further integrated to get r as a function of time. Now we go back to what I had said earlier 

that the definition of work and energy arises naturally when we eliminate time from the 

equation of motion. Let us do that first for one dimensional case and analyze the problem in 

detail.  

 Work and energy in one dimension  

The equation of motion in one-dimension (taking the variable to be x, and the force to be F ) is  

 

Let us again eliminate time from the left-hand using the technique used above  

 

to get  

 

On integration this equation gives  

 

where xi and xf refer to the initial and final positions, and vi and vf to the initial and final 



173 
 

velocities, respectively. We now interpret this result. We define the kinetic energy of a particle 

of mass m and velocity v to be  

 

and the work done in moving from one position to the other as the integral given above  

 

With these definitions the equation derived above tells us that work done on a particle changes 

its kinetic energy by an equal amount; this known as the work-energy theorem .  

You may ask: how do we know this equation to be true and consistent with our observations? 

This is the question that was asked in the early eighteenth century when it was not clear how to 

define energy, whether as mv or as mv
2
 ? The problem with the definition as mv is that if two 

particles moving in the opposite directions have their energies canceling each other and if they 

collide, they stop and all the energy is lost . On the other hand, defining it proportional to v
2
 

makes their energies add up and noting is lost during collision; the energy just changes form 

but is conserved. Experimental evidence for the latter was found by dropping weights into soft 

clay floors. It was found that by increasing the speed of the weights by a factor of two made 

them sink in a distance roughly four times more; increase in the speed by a factor of three 

made it nine times more. That was the evidence in favor of kinetic energy being proportional to 

v
2
 .  

Potential energy: Let us now define another related energy known as the potential energy . 

This defined for a force field that may exist in the space, for example the gravitational field or 

the electric field. Before doing that we first note that even in one dimension, there are many 

different ways in which one can go from point 1 to point 2 . Two such paths are shown in the 

figure below.  

 
 

On path A the particle goes directly from point 1 to 2 , whereas on path B it goes beyond point 

2 and then comes back. The question we now ask is if the work done is always the same in 

going from point 1 to point 2. This is not always true. For example if there is friction, the work 
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done against friction while moving on path B will be more that on path A. If for a force the 

work done depends on the path, potential energy cannot be defined for such forces. On the 

other hand, if the work W12 done by a force in going from 1 to 2 is independent of the path, it 

can be expressed as the difference of a quantity that depends only on the positions x1 and x2 of 

points 1 and 2  

(Question: If the work done is independent of path, what will be the work done by the force 

field when a particle comes back to its initial position? ). We write this as  

 

and call the quantity U(x) the potential energy of the particle. We now interpret this quantity. 

Assume that a particle is in a force field F(x) . We now apply a force on the particle to keep it 

in equilibrium and move it very-very slowly from point 1 to 2. Obviously the force applied by 

us is - F(x) and the work done by us in taking the particle from 1 to 2, while maintaining its 

equilibrium, is  

 

Thus for a given force field, the potential energy difference U(x2 ) - U(x1 ) between two points 

is the work done by us in moving a particle, keeping it in equilibrium, from 1 to 2 . Note that it 

is the work done by us - and not by the force field - that gives the difference in the potential 

energy. By definition, the work done by the force field is negative of the difference in the 

potential energy. Further, it is the difference in the potential energy that is a physically 

meaningful quantity. Thus is we want to define the potential energy U(x) as a function of x , we 

must choose a reference point where we take the potential energy to be zero. For example in 

defining the gravitational potential energy near the earth's surface, we take the ground level to 

be the reference point and define the potential energy of a mass m at height h as mgh . We 

could equally well take a point at height h0 to be the reference point; in that case the potential 

energy for the same mass at height h would be mg(h - h0 ) . Let us now solve another example.  

   

Example: A particle is restricted to move along the x-axis and is acted upon by a force 

. Find its potential energy.  

We first note that the force is always acting towards the positive x-direction. Thus when we 

move the particle, we will have to do positive work when taking it towards the negative 

direction. Thus we expect the potential energy to increase as x becomes more and more 

negative. By definition  
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Now we choose our reference point. If we choose U(x1 = ∞) = 0 , the potential energy is given 

as  

 

On the other hand if we choose U(x1 = 0) = 0 , we get  

 

The two energies are shifted with respect to one another by a constant so that the difference in 

the potential energy between two points is the same for both the forms, as pointed out earlier. 

The potential energy is lowest for x = ∞ and increases as we move towards left and becomes 

largest for x = - ∞ . This is precisely what we had anticipated above on the basis of the 

meaning of potential energy 

Conservation of energy: Having defined potential energy we now combine it with the work 

energy theorem to come up with another very important conservation principle: that of 

conservation of energy . This is obtained as follows. By the work energy theorem  

 

and by definition of the potential energy  

 

Combining the two equations we get  

 

This equation means that if a particle moves in a force field where the work done by the force 

does not depend on the path taken, the sum of its kinetic and potential energy remains 
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unchanged from one point to another. The sum of the kinetic and potential energy is known as 

the total mechanical energy. Thus in a force field for which the potential can be defined, total 

mechanical energy is conserved. Such force fields, where the total mechanical energy is 

conserved, are therefore known as conservative force fields. Thus whereas the example above 

is a conservative force field, frictional force is not. Question: If the potential energy is 

explicitly time-dependent, is the total energy conserved?  

We now move on to generalize and discuss these concepts in three-dimensions.  

Work and energy in three dimensions  

As we already know, work is defined as the scalar product of the force and displacement 

vector. Thus if a particle moves under the influence of a force field from point 1 to point 

2 along the path shown below, the total work is calculated as the sum of partial work done 

when the particle moves a vanishingly small distance along the arrows shown below in the 

figure.  

 

   

Thus the total work done in gives as  

 

where C(12) indicates that the particle is moving along the curve C from point 1 to 2 . Writing 

the dot product explicitly, we get  

 

where Fi (i = x,y,z) indicates the i
th

 component of the force and x, y and z are varied along the 

curve. Let us do an example of calculating the work in this manner in two-dimensions.  



177 
 

   

Example: Consider two force fields (a) , and (b) in the 

x-y plane. Calculate the work done by these forces when a particle moves from the origin to 

(1,2) along the three paths C1, C2 and C3 shown in the figure below. On C1 the particle goes 

along the x-axis first and then moves parallel to the y-axis; on C2 it travels along the y-axis 

first and then parallel to the x-axis and on C3 it moves along the diagonal.  

 

The work done is given by the formula  

 

Along C1 y = 0 , dy = 0 while moving along the x-axis whereas x = 1 and dx = 0 when the 

particle travels parallel to the y-axis. Thus the work done along C1 is  

 

Similarly work done along C2 is given as  

 

For path C3, we have y = 2x so that dy = 2dx . Therefore we substitute y = 2x in the functions 

giving the force and replace dy by 2dx . As a result, the final integration is over x only with x 

varying from 0 to 1 . Thus the work done is  
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We are now ready to work out the work done by force in (a) and (b) (I would like you to plot 

these force fields and leave it as an exercise for you). For the force in (a) we get  

;  

;  

 

For force (b) on the other hand we get  

 

 

 

Thus we see that whereas the force in (a) gives the work to be the same for all three paths, that 

in (b) gives different work along the three paths. Thus the first force field may be conservative 

but the second one is definitely not.  

Now let us derive the work-energy theorem in three dimensions. Start from the equation of 

motion and take the dot product of both sides with the velocity to get  
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Now integrate both sides with respect to time and use , where is the small distance 

traveled by the particle in time interval dt , to get  

 

On integration this leads to  

 

This equation tells us that when a force makes a particle move along path C from point 1 to 2, 

the work done by the force equals the change in its kinetic energy. This is the work-energy 

theorem in three-dimensions. It is exactly the same as in one dimension except that the work 

done is calculated by moving along a three-dimensional path.  

   

Potential energy: As is the case in one dimensional motion, potential energy in general can be 

defined only if the work done is path independent. In that case, the work done depends only on 

the end points of the path of travel and can be written as the difference on a quantity that is a 

function of the position vector only. Thus  

 

where is defined as the potential energy. Notice that this time I have not written any 

specific path but just the end points with the integral sign because the work is supposed to be 

path-independent. From the definition above, it is also evident that here too the difference in 

the potential energy between point 1 and point 2 is the work done by us in 

moving a particle slowly, maintaining its equilibrium, from point 1 to point 2. Now following 

the exactly same steps that we did for the one dimensional case, we show that  

 

Thus when the potential energy can be defined, the total mechanical energy of a particle is 

conserved . I remind you that the total mechanical energy is the sum of the kinetic and the 

potential energies. In such cases the force is said to be conservative.  

By now you may be wondering how can we find out whether a force is conservative or not. Do 

we have to calculate the work done along all possible paths before we can say that the force is 
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conservative and therefore the principle of conservation of energy holds good. That certainly 

would be impossible to do. However, there is a much simpler test to check whether a force 

field is conservative or not. I am going to tell you about it without giving the proof. To find out 

about the conservative nature of a force , we calculate its curl defined as  

 

Now if the curl of a force field vanishes everywhere, it is a conservative force field. On the 

other hand if the curl of a force field is nonzero, it is not conservative. Let us now apply this 

test to the two force fields for which we calculated the work done along different paths. For the 

force field , the curl is zero everywhere. Hence it is conservative and, as we 

saw with three paths, the work done in this field is indeed path independent. On the other hand, 

for , the curl comes out to be and therefore the force is not conservative. 

This was seen above where the work done along the three paths were all different. We now 

solve an example where knowing the conservative nature beforehand helps us avoid an 

unnecessary calculation 

Example: Take the force field given by and consider a 

particle moving from A to be along the semicircular path ACB (see figure below). Calculate 

the difference in its kinetic energy at B and at A.  

   

 

To calculate the change in the kinetic energy of the particle as it moves from A to B, we should 

calculate the work done by the force in when the particle travels along the semicircle. For this 
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we should calculate  

 

with y and dy calculated from the equation of the circle . You should try it 

and see for yourself that the integrals become really lengthy. On the other hand, if the force is 

conservative, we can calculate the work done in particle moving along the diameter. The latter 

calculation is much easier. Let us therefore first calculate the curl of the force. It is  

 

Thus the work done between any two points is path-independent. We therefore calculate the 

work along the diameter AB. It is  

 

Since the work done is independent of the path, it is going to be the same for the semicircular 

path ACB also.  

After defining the potential energy and getting the principle of conservation energy, we now 

look a little more at the relationship between the potential energy and the force it gives rise to. 

As a consequence we also discuss what can we learn about the motion of a particle by looking 

at its potential energy curve 

Learning about force and motion from the potential energy  

We learnt above about how the force leads to the concept of potential energy. However, it is 

the potential energy that is easier to specify than the force. The reason is very simple: force is a 

vector quantity and as such in specifying it we have to give its three components as a function 

of position. On the other hand, potential energy is a scalar quantity and is easier to write as a 

function of position. For the same reason, many a times it is easier to calculate the potential 

energy than to calculate the force, as we will see in an example below. Thus generally we give 
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the potential energy of a particle to tell about the force field in which the particle is moving. In 

this section we discuss what can we learn about the motion of a particle by looking at its 

potential energy.  

First we discuss how do we get the force from the potential energy. Let us first look at one-

dimensional case. Employing the definition of potential energy, we find that for a small 

displacement Δx  

 

which means that the force is given by the formula  

 

This is the key formula relating the force to the potential energy. On the basis of this formula, 

we can infer a lot about the nature of motion by looking at the potential energy curve. First if 

, then the force is towards the negative x-direction and if , the force is 

towards the positive x-direction. Thus the force is in the direction of decreasing U(x). What if 

? In that case the particle in either on a maximum or a minimum of the potential 

and there is no force on the particle. The particle is therefore in equilibrium. The equilibrium 

will be stable one, that is the particle will come back to the equilibrium point when displaced 

slightly from that point, if it is at the potential energy minimum or equivalently where 

. On the other hand at the maximum of the potential energy, the particle will rush 

away from that point if it is disturbed. Thus at the potential energy maximum, where 

, the equilibrium is unstable. We see that a particle tends to move towards its 

potential energy minimum and move away from its potential energy maximum. All these 

concepts can be shown nicely with a bead moving on a smooth frictionless wire bent in the 

shape of a curve with many maxima and minima and held in the vertical plane (see the figure 

below). The potential energy of the bead is then proportional to the height of the curve and as 

such the wire itself represents the potential energy curve in the figure below.  
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Now with a bead sliding over the wire, you can easily check that all the points made above 

about the relationship between the force on the bead and the mathematical properties of the 

potential energy curve are correct. Further the minima and maxima of the curve are clearly 

observed to be stable and unstable equilibrium points, respectively.  

In three dimensions the equivalent of the derivative is the gradient operator. Thus the force 

in two or three dimensions is given as  

 

Thus the force is in the direction opposite to that of increasing U. Further, it vanishes wherever 

the gradient of the potential energy is zero. Individual components of the force are given as  

 

A word of caution is needed here. does not mean that if we 

transform to some other co-ordinates system (say spherical) then  
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will be correct. This is not even dimensionally correct. To get the correct answer, one must 

properly transform from Cartesian to polar co-ordinates. The result then is  

 

Thus in spherical polar coordinate system, the force components are given as  

 

Similarly in cylindrical coordinate system the force is related to the potential energy as  

 

With the individual force components  

 

Having given you the prescription for obtaining force from the potential energy let us now 

apply it to find the field of an electric dipole using its scalar potential.  

   

Example: As an application of finding force from the potential, let us calculate the electric 

field due to a dipole.  

Let the dipole be situated at the origin along the x-axis. Let the charges -q and +q be separated 

by distance 2a (see figure below) so that the dipole moment is . Then potential and 

field at any point can be calculated by adding the field due to the two charges. Adding the field 

in this case becomes a bit difficult because we have to obtain three components of the field for 

each charge and add them. On the other hand, finding the potential is relatively easy because it 

is a scalar quantity and we obtain it by adding the potential due to two charges. Then the 

gradient gives the field. In the calculation we assume that a → 0 and q is correspondingly very 

large so that their product is finite. We will be using this by keeping term only linear in a and 

neglecting higher orders.  
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The potential (potential energy per unit charge) due the two charges is given as  

 

 

Now taking the gradient we get the three components of the force, which are  

 

Similarly  
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Combining these results together we get for the field of the dipole  

 

I would like you to get the same result by adding the fields of the charges together and 

compare the answers.  

In these lectures, we have learnt: the work-energy theorem, definition of potential and its 

relationship with the force field, concept of conservative forces and the principle of 

conservation of energy. I leave these lectures by giving you a few exercises.  

   

Exercise 1: Consider one-dimensional motion in a potential U(x). Show that if a particle of 

mass m is displaced slightly from its equilibrium position at a potential energy minimum at x0 , 

it will perform simple harmonic oscillations. Find the corresponding frequency.  

Exercise 2: Consider two different inertial frames moving with respect to one another with a 

constant velocity. Starting from the work-energy theorem in one frame, prove that it is true in 

the other frame also.  

Lecture 17 

Collisions  

 

In the previous two lectures, we have seen that when many particles are interacting, there are 

two conservation systems that are obeyed by them. One, if the net external force on the 

particles is zero, the total angular momentum of the system remains a constant. This is 

expressed mathematically as  

 

Further we saw during the motion of a many particle system, one point - its centre of mass - 
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moves as if its mass M is equal to the total mass of the system and the total force 

is being applied on that mass. The CM co-ordinate is defines as  

 

   

And it moves according to the equation  

 

Thus if then . That means if the total external force on the system is 

zero, the CM moves with a constant velocity. This is another way of expressing the 

conservation of linear momentum.  

The other conservation principle that we saw was that of total energy. Accordingly the total 

energy, which is the sum of their kinetic energy KEi and potential energy PEi , of a system of 

particles remains a constant  

 

As an example of the power of these principles, in this lecture we apply these two principles to 

the problem of two particles of masses m1 and m2 colliding.  

Before we discuss the problem of two particles colliding, we prove something very important 

and useful: Kinetic energy of a system of particles is equal to the sum of the kinetic energy of 

its centre of mass and kinetic energy of particles with respect to the centre of mass . By kinetic 

energy of the CM we mean its kinetic energy calculated as a point particle of the total mass 

moving with the velocity of the CM. To see this, substitute in the expression 

for the kinetic energy  

 

, where is the velocity of the CM and is the velocity of i
th

 particle in the 

CM frame. This gives  
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Now is the momentum of the CM with respect to the CM and therefore proportional to 

the velocity of the CM with respect to the CM. But the velocity of the CM relative to the CM is 

zero implying that . This immediately gives  

 

                                                         = KE of the CM + KE about the CM  

This result, that the kinetic energy of a system of particles can be decomposed into KE of the 

CM and KE about the CM, is very important and useful. In a later lecture, we will see that the 

same is true for the angular momentum.  

The division of kinetic energy as shown above is useful in learning how energies are shared 

when particles interact with each-other for short periods of time. As an example take explosion 

of a bomb. Since the CM will keep on moving the same way as it was before the explosion - 

because the forces generated are between the pieces of the bomb and therefore have no effect 

on the total momentum of the system - the explosion does not change the kinetic energy of the 

CM. Thus all the energy released in the explosion goes to the kinetic energy of the pieces of 

the bomb with respect to the CM. As another example, consider two particles colliding and 

getting stuck together. Since the CM keeps on moving with the same speed because of 

momentum conservation, the minimum kinetic energy that the masses stuck together have to 

have is that of the centre of mass. Thus the maximum possible energy loss in this case is the 

sum of their kinetic energy relative to their CM (also called the kinetic energy in the CM 

frame).  

We now get back to the problem of two particles colliding. We consider two particles of 

masses m1 and m2 coming in with velocities , respectively, interacting in a region, and 

then going out with velocities (see figure 1). This is the simplest collision problem. If 

more particles are involved then the problem is going to be move complicated.  
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Since 

we assume particles interact only when they are close to each other, they are essentially free 

before and after the collision. Further, the interaction region is very small; thus even if the 

particles are in an external field, the potential energy remains essentially unchanged during the 

collision. Thus we can write  

 

where we have added ΔE on the left-hand side to take into account any addition or loss of 

energy during the interaction of particles. For example if the particles generate some energy 

during interaction, ΔE > 0 . This will be the case when two particles release some chemical 

energy. On the other hand, ΔE < 0 when the particles lose energy during interaction. This is 

called an inelastic collision. ΔE = 0 is the case of elastic collision; here the total kinetic energy 

before and after the collision is the same. If particles interact over a large region, we can take 

the velocities to be in the asymptotic region, where the particles are far apart and therefore the 

equations above are applicable. The discussion so far has been in terms of balancing the 

energies involved during the interaction.  

The other conservation principle is that of conservation of momentum. Usually during collision 

the impulse due to collision (internal force if two particles are considered as one system) is 

much larger than any external impulses. So we neglect it and conserve momentum. If the 

external impulse comparable to the internal impulse, it must be taken into account. This could 

be the case when the external force is very large or the particles interact for a long time. For the 

time being though, we will focus on cases where external impulse can be neglected. Thus  

 

The two equations are actually a set of four equations with momentum conservation giving 

three equations, one for each component. However, given , we have to solve for 

six quantities, three components for and three for . Thus to solve the problem 
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completely, we need more information, for example the scattering angles. In two dimensions 

also, the conservation equations alone are not enough to solve the problem of finding velocities 

after the collision. This is because now there will be four unknowns - two components for 

velocity of each particle - but only three equation, one from the energy balance and two from 

momentum conservation. Only in one dimension, we can solve the collision problem 

completely because there are two equations and two unknowns. Nonetheless, we can get a lot 

of information about the motion from these two conservation laws as we now discuss.  

As the first example, let us consider two particles of masses m1 and m2 moving with velocities 

, respectively, colliding, getting stuck together to make a particle of mass (m1 +m2 ) 

that moves with velocity . In the process energy ΔE is released. Then moment conservation 

tells us  

 

and balancing the energy gives  

 

Notice that we have added to ΔE to the left-hand side so that the total final kinetic energy is the 

sum of the total initial kinetic energy and the energy added to the system. Substituting for 

from the momentum conservation equation in the energy equation, we get  

 

which on simplification gives  

 

The left-hand side of the equation above is definitely positive. On the other hand, the right-

hand side is negative if ΔE > 0 , i.e., the final kinetic energy is larger than the initial kinetic 

energy. So this reaction will not be possible if it is exothermic, i.e., some energy is generated 

and added to the initial kinetic energy. Thus two atoms colliding in free space will not combine 

to form a molecule (in which process the energy is usually released). However if energy is 

taken away from the system, i.e. ΔE < 0, then the reaction is possible. This is the information 

we have got purely on the basis of conservation laws. We now go on to discuss collisions as 

described with respect to the CM. We will see that this gives us a lot of insight into the 

collision problem.  

As we had stated earlier, the conservation of momentum implies that the centre of mass moves 
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with a constant velocity when there is no external force on the particles. Thus if we attach a 

frame to the CM, it will also move with constant velocity and will be an initial frame of 

reference. Let us call this the CM frame. Since it is an inertial frame, we can equally well 

describe a collision process is a CM frame. Observing a collision from the CM frame gives us 

the biggest advantage that the sum of the momenta (the total momentum) is always zero in this 

frame. In this lecture we will be focusing on two particle collisions as described from the CM 

frame. We will see that because of the total momentum being zero, description of a collision in 

this frame becomes simpler. In coming lectures we will see that CM provides a convenient 

origin for studying rotational motion also.  

For now, let us look at the two particles collision. As stated above, in the CM frame the total 

momentum is always zero because in this frame the CM does not move. So that the velocities 

of two particles in the CM frame are always in the direction opposite to each other. Further the 

motion remains confined to a plane formed by the lines representing the initial and the final 

velocities directions (keep in mind that the velocities of the two particles at any instant are 

along the same line though opposite in direction). Thus in the CM frame a collision looks as 

shown in figure 2.  

 

In figure 2 two particles with masses m1 and m2 and velocities and are 

coming in for a collision; they collide and particle 1 goes out with velocity and particle 2 

with . In the process particle 1 gets deflected by an angle ΘCM. As stated earlier, 

even in 2d there are four unknowns: two components of and two of to be obtained but 

only three equations- one for energy conservation and two for momentum conservation. So the 
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problem cannot be solved fully by using conservation principle only. However, if the 

interaction is known, then ΘCM and both the velocities after collision can in principle be 

calculated. Let us now see how much can we learn about the motion after collision applying 

only the conservation principles. We will be discussing both the elastic and inelastic collisions. 

Recall that if the kinetic energy remains unchanged in a collision, the collision is elastic; on the 

other hand, if the energy is lost the collision is inelastic.  

Let us first focus on an elastic collision and analyze it in the CM frame. As pointed out earlier, 

the velocities of the two particles before and after collision are opposite to each other. Thus the 

relationship between the magnitudes v1C , v2C , v'1C and v'2C of the velocities is  

 

 

 

Substituting for and from the first two equations in the last one we get  

 

Thus the velocity vectors of both particles just rotate but do not change in magnitude as the 

partial move out after collision. You have learnt in previous classes that in an elastic collision 

the magnitude of the relative velocity of one particle with respect to the other remains 

unchanged during the collision. In one dimension it means that the speed of approach of two 

particles is the same as their speed of separation. Let us now see how it follows directly from 

the conservation principles.  

As we have derived above, in an elastic collision. If the velocities of 

the two particles are , respectively, in the ground frame, then  

 

Similar relationships hold for the velocities after collision i.e.  

 

Using these relationships we find that  
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Similarly, we have  

 

Thus we see that in an elastic collision  

 

We have shown that the magnitude of relative velocity of one particle with respect to other 

remains the same in an elastic collision.  

To see the dramatic effects of a nearly elastic collision, take a table-tennis ball (very small 

mass m), put it on a large bouncy ball of mass M (M >> m) , and drop them from a height (see 

figure 4) on a hard floor. You will see that the table-tennis ball bounces back really high after 

the balls hit the ground. Can you work how high will it go if the balls are dropped from a 

height h? Assume that no energy is lost.  
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Now we consider a two-particle elastic collision in a plane and analyze it. This could be the 

collision of a striker and a coin on a carom board, for example. It is a two-dimensional case. 

We are going to analyze the motion graphically. First we look at the velocities in the CM 

frame. If we take the initial direction of particle 1 towards +x , the velocities of the two 

particles before and after collision can be shown as done in figure 5. Keep in mind that in an 

elastic collision, the magnitude of the velocities of each particle remains unchanged in the CM 

frame. However the direction of the velocity for each particle changes by an angle ΘCM. as 

shown in figure 5.  

 

The picture above shows the angle of scattering in the CM frame. However experiments are 

done on ground - and not in the CM frame. So we should be answering the question: by what 

angle θlab does particle 1 scatter in the laboratory frame? Since velocities and in the lab 

frame are given as , the relationship between these velocities 

can be shown as done in figure 6.  
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From figure 6, it is now very easy to see that  

 

Similar relationships can also be derived for particle 2. Now if particle 2 was at rest when hit 

by particle 1, then  

 

This gives  

 

Let us now look at two cases: m1 > m2 and m1 < m2 . In the case of m1 > m2 , θlab cannot be 

greater than a particular angle θmax. This can be either calculated by using the expression above 

or alternatively, graphically as we do. For m1 > m2 we also have vCM >v1C . Thus a picture 

showing the velocities in the laboratory and the CM frame looks like that in figure 7.  
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It is clear from figure 7 that the deflection angle of particle 1, when hitting another particle of 

smaller mass, increases as ΘCM increases from zero. It is maximum when the velocities and 

are perpendicular. If is rotates beyond this angle, deflection starts becoming smaller. 

Thus θmax is given by the formula  

 

It is clear from the expression above that when a particle hits a lighter particle at rest, it is 

deflected by a small angle. This is reasonable as a light particle can hardy deflect a heavier 

particle. Thus the heavier particle keeps on moving forward even after the collision. On the 

other hand, there is no restriction on the scattering angle when a light particle hits a heavier 

particle at rest i.e. m1 < m2 . In this case vCM < v1C and therefore the graphical representation of 

different velocities is as shown in figure 8.  
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It is clear from the figure that as ΘCM increases, so does θlab. In this situation, however, there is 

no restriction on the value that θlab can take as ΘCM sweeps angles from 0 to 2π .  

So far we have focused on elastic collisions only and could learn a great deal about them from 

conservation laws for momentum and energy. Such general conclusions are difficult to draw 

for inelastic collisions. As discussed in the beginning of this lecture, for inelastic collisions, we 

can definitely say that the maximum possible loss of energy is equal to the kinetic energy of 

particles in their CM frame. This would occur when the colliding particles get stuck together so 

that their kinetic energy after collision is zero in the CM frame. This concludes our lecture on 

collisions as analyzed using conservation laws.  

Lecture 18 

Rotational dynamics I: Angular momentum  

  

So far we have applied Newton's laws to point particles and the CM motion for a collection of 

particles. We are now going to look at what happens beyond the motion of the CM, which is 

described by the equation  

 

Let us see what else could happen to a body made up of a collection of particles where forces 

are applied at each point (figure 1). The particles are connected with flexible attachments 

shown as lines.  
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In the figure above, although the CM moves with , the body itself could deform 

and change its orientation. Thus the distances between the particles and the angles between 

lines joining them would change. This is the most general motion that could take place. In the 

next few lectures we want to focus only one of the effects of the force applied. We are going to 

assume that a body only changes its orientation but does not deform. This is achieved by 

keeping the distance between any two particles of the body unchanged. Such a body is known 

as a rigid body . Thus in the example above, if we connect all the particles with each other by 

rods of fixed length, the body will become rigid. This is shown in figure 2.  

 

The only possible motion of such a body is a translation plus a change in its orientation. The 

simplest example of a rigid body is two masses attached at the ends of a rod of fixed length. On 

the other hand, a tin-can partially filled with sand is not a rigid body since the distance between 

two particles keeps on changing with the motion of the can.  
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As stated above, the most general motion of a rigid body is its translation plus its change of 

orientation. The latter is equivalent to a rotation about a point. The beauty of this 

decomposition is that to get the final position of the body, we can translate any point in the 

body and then rotate the body about that point. Irrespective of which point we choose, the 

sense and the angle of rotation is always the same. Usually this point is taken to be the CM for 

reasons that will become clear later lectures. This general motion is shown below in figure 3, 

giving two possible ways of translating and rotating the body.  

 

You see that in figure 3 the rigid body has translated and also rotated. On the other hand, if we 

keep one of the points on the body fixed the only thing the body can do is to change its 

orientation (see figure 4). Thus with a point fixed, the only possible motion of a rigid body is a 

rotation.  

 

A question that arises now is how many variables do we need to specify the general motion of 

a rigid body. It requires three variables - x, y and z coordinates of the point that is translated - 

to describe the translation, and three more - angle of rotation about each axis - to represent the 

rotation. You can see that in general a rigid body would require six variables to describe its 

motion. However, if one of its points is fixed, three variables are sufficient to specify its 
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rotation. So we conclude a rigid body needs six parameters to describe its motion.  

For simplicity, in the beginning we are going to focus on rigid moving with its one point fixed. 

Thus it will change only by changing its orientation. We will further simplify the problem by 

considering rotation about an axis fixed in space. In the next step, we will allow the axis to 

translate but without changing its orientation. Finally we will also let the orientation of the axis 

change. Thus we will increase the complexity of the problem gradually.  

 

 

Dynamics of rigid body: The dynamics of a rigid body is best described by considering its 

angular momentum. You can think of angular momentum as the rotational counter part of 

linear momentum. This quantity is central to describing rotational motion of a rigid body. So 

let us first spend some time in understanding this quantity. Although we are introducing 

angular momentum here in the context of rigid bodies, the treatment below is quite general.  

For a single particle moving with linear momentum at a distance from the origin the 

angular momentum is defined as  

 

You can immediately see that it is an origin-dependent quantity. If we calculate it with respect 

to some other point, it will come out to be different. If a particle of mass m is moving in a plane 

then using the polar coordinates for it, it is easily shown that its angular momentum is 

. Let us now find out what is the rate of change of angular moment? It is calculated 

below.  

 

With , where is the force on the particle, the equation above is 

simplified to  

 

Thus rate of change of angular momentum is equal to the torque applied on the body. From the 

equation above, the law of conservation of angular momentum follows immediately: If the 

applied torque the angular momentum does not change, i.e. it is a constant. The 

equation  



201 
 

 

is the angular momentum equivalent of Newton 's II
nd

 law. Let us now illustrate the ideas 

presented so far with the example of a conical pendulum.  

   

Example 1: A conical pendulum is like the regular pendulum with a light (mass m = 0 ) rigid 

rod carrying a bob of mass m at one of its ends. The other end is fixed and the bob moves in a 

circle with speed v (see figure 6). We wish to calculate the tension in the rod and the angle θ it 

makes from the vertical by applying the angular momentum-torque equation.  

 

Let us first calculate angular momentum about point O . We will use cylindrical co-ordinates 

because of the symmetry of the problem. With respect to O  

 

The vector looks as shown in figure 7, when the bob of the pendulum is in the paper plane. 
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So the angular momentum is perpendicular to the rod (take the dot product with 

for mass m and see for yourself) and as the particle rotates the horizontal 

component of are rotates with it and the vertical component remains a constant. Let us now 

apply the equation  

 

We have  

 

We now calculate the torque acting on the pendulum. There are two forces, the tension and 

the weight , acting on the particle as shown in figure 8.  
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But passes through O and does not give any torque. Thus  

 

Substituting these in the angular momentum-torque equation then gives  

 

The angular momentum-torque equation therefore gives us the angle θ that the pendulum 

makes with the vertical. How do we find the tension T ? On the other hand, applying Newton 's 

second Law we get  

 

giving  
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These equations give us both T and θ, but the equation gives only the angular 

relationship. Does this mean that the angular-momentum torque equation is not equivalent to 

Newton 's second law? The answer is that it is. It so happens that in applying the equation 

about O, when cross products are taken, some components of the force do not 

contribute to the torque and drop out of the equation. For example in this case becomes 

zero. To get full solution, therefore, we now apply about point A. Taking A as the 

origin we have  

 

Since all the quantities in are constants, we have  

 

Let us calculate the torque about A. With A as the origin, the forces are given as  

 

Therefore  

 

which gives  

 

Thus applying about two different points gives exactly the same solution as that 

obtained from . Thus the two ways of solving the problem are equivalent. Through this 

example I have shown you (a) the origin dependence of , and (b) equivalence of 
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and .  

Let me now illustrate conservation of angular momentum by a well known example: that of 

Kepler's Law of equal area concept in equal time. Accordingly, when planets are going around 

the sun, the rate at which their position vector from the sun sweeps the area is a constant. 

Recall from the lecture on polar coordinates that for a particle moving under a radial force, we 

had obtained that is a constant. This is nothing but two times the rate of area sweep by the 

radius vector. We now want to get this law from the conservation of angular momentum.  

For a planet, we know that the force is in redial direction. So that the torque  

 

Thus  

 

Since , its constancy means  

 

which is Kepler's second law.  

After this initial demonstration of with a single particle, we move on to a system of 

many particles. It is really a system of many particles that we are dealing with in rigid-body 

dynamics.  

Angular Momentum of a collection of particles: If there are many particles then the total 

angular momentum about a point O is the sum of individual angular momenta of each 

particle about O . Thus  

 

As for the angular momentum of a single particle, the angular momentum of a many-particle 

system is also origin-dependent. (Question: Under what conditions will the angular momentum 

be independent of the origin?)  
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Now recall that the kinetic energy for a collection of particles is the sum of the kinetic energy 

of their centre of mass (CM) and the kinetic energy of particles with respect to the CM. 

Interestingly the angular momentum of a many-particle system can be expressed in the same 

manner. Thus the total angular momentum of a collection of particles is equal to the angular 

momentum of the CM plus the angular momentum of particles about the CM. Let us now 

prove it. To do so express the position vector and the velocity of a particle as  

 

where refer to the position and velocity of the CM and the position and 

velocity of i
th

 particle with respect to the CM. Now the total angular momentum can be writes 

as  

 

However, by definition of the CM, . Therefore the second 

and the last term in the expression above do not contribute. The remaining terms are written as  

 

where M is the total mass of the system. This is a remarkable result, and as we will see, 

facilitates calculations involving rigid-body dynamics a lot. Keep in mind though that this 

result is true only with for the CM. For an arbitrary point O' in the body, we cannot write  

 

because depends explicitly on the definition of the CM. We will later use 

this fact to obtain the parallel axis theorem that you may have learnt in your previous classes. 

The theorem is similar to the transfer theorem of the second-moment of an area.  
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The relationship also tells us that if the total momentum of a system of 

particles is zero, its angular momentum will be independent of the origin. I leave the simple 

proof for you to work out.  

Example: Take a bicycle wheel of radius R rolling along the ground and assume all its mass M 

is concentrated along the rim. If it is rolling without slipping then its motion is as follows: its 

CM moves with speed V along a straight line and the wheel rotates about the CM with angular 

speed so that the point on ground is at rest. We want to find its angular momentum in a 

frame stuck to the ground such that the wheel is moving along its x-axis see figure 9).  

 

The angular momentum of the wheel about its CM is given as  

 

So angular momentum about the origin O1 (see figure 9) would be  

 

On the other hand, if we were to calculate the angular momentum about O2 (see figure 9) it 

would come out to be  
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Notice that in both the cases we have added the angular momentum of the CM and that about 

the CM. It is because their directions come out to be the same (negative z direction). One must 

be careful about these things because angular momentum is a vector quantity. Having 

introduced you to the concept of angular momentum, I now discuss about the rate of its change 

for a many-particle system where the particles are interacting with each other also.  

   

Dynamic of a rigid body; and conservation of angular momentum: Let us now look at 

in the case of a collection of particles which are interacting with each other and are also 

being acted upon by external forces.  

 

But ( s the total force, i.e. the sum of external and internal forces on the 

particle). This gives  

 

Before simplifying this equation in terms of the external torque, let us see where does this 

equation lead us for a two particle system shown in figure 10?  
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The two particles 1 and 2 shown in figure 10 are external forces , respectively. 

They also interact with each other with particle 2 applying a force on particle 1 and particle 

1 applying a force on particle 2. We assume the forces to be following Newton 's III
rd

 law 

so that . Now the rate of change for this system can be written as  

 

Thus the rate of change of angular momentum is equal to only the external torque if 

or ,i.e. the force between the particles is along the line joining 

them. At this point I would like you to recall that in the case of linear momentum, the rate of 

change on linear momentum equals the total external force, i.e. . 

For angular momentum to satisfy , the additional condition of is also 

needed. Fortunately for most of the mechanical applications this is true. Let us now generalize 

this to the case of a many-particle system. For such a system  

 

Recall the trick used in the case of linear momentum that  

 

so that  
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Under these conditions, i.e. if the force between the particles is along the line joining them , we 

get  

 

Thus if then . Thus is the law of conservation of total angular 

momentum. In the next lecture we will do a few example of its application.  

   

We now conclude this lecture by listing the following points that we have learnt:  

1. A rigid body needs six parameters to describe its general motion; three for translation 

and three for rotation,  

2. Dynamics of rigid body is governed by its angular momentum,  

3. The angular momentum satisfies the equation  

 

under the condition that the internal forces satisfy Newton 's III
rd

 law and an additional 

condition that  

4.  

 Lecture 19 

Rotational dynamics II: Rotation about a fixed axis  

 

We saw in the previous lecture on rigid bodies that a rigid body in general requires six 

parameters to describe its motion, and the dynamic of a rigid body is determined through its 
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angular momentum that satisfies the equation , where is the applied torque on 

the body. Further, means that is a constant.  

In this lecture I start with an example of the conservation of angular momentum involving two 

particles. I again show that a direct application of Newton 's laws and a solution through the 

conservation of angular momentum give the same answer.  

   

Example 1: There is a rigid massless rod of length b held at point O carrying a mass m2 at its 

other end. Let the y-coordinate of m2 be a. Another mass m1 comes parallel to the x-axis and 

hits m2 and the two masses get stuck together (see figure 1). Question is at what speed will the 

rod rotate?  

 

Let us apply the conservation of angular momentum to the system of two masses about point 

O. This is because the only external force acts at O so the torque about O is zero and therefore 

the angular momentum about O is conserved. Since the particles are moving in the xy plane, 

their angular momentum is going to be in the z direction. So we write the unit vector explicitly 

and work in terms of numbers (both positive and negative) only. Assume that the angular 

velocity of the rod after the mass m1 gets stuck with it is ω. To apply angular momentum 

conservation we calculate the angular momentum of the system before and after collision and 

equate them.  

Initial angular momentum about O = m1 va  

Final angular momentum = (m1 + m2 )b
2
 ω  

Equating the two gives  
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Let us now see if the conventional force analysis also gives the same answer. The incoming 

mass m1 comes in with momentum m1v. Now after m2  is hit, it cannot have any movement 

parallel to the rod because the rod is rigid, i.e. the rod is capable of generating enough tension 

(impulse) in it to make the component of momentum parallel to the rod zero. On the other 

hand, there is no force perpendicular to the rod so the momentum component p in that 

direction remains unchanged after the hit. Now  

 

After the masses get stuck together, p remains the same. Thus the new speed v' acquired by 

the masses will be such that  

 

This gives  

 

which is the same as obtained by angular momentum conservation. Thus again showing the 

equivalence of the two methods.  

With all this preparation, let us now start with the simplest motion of a rigid body that is the 

rotation of a rigid body about an axis fixed in space. So the axis is neither translating nor 

rotating. Without any loss of generality, let us call this axis the z-axis. In this case the body has 

only one degree of freedom and the only variable that we need to describe the motion of the 

body is the angle of rotation about the axis. Further, the only relevant component of angular 

momentum in this case is the component along the z-axis. Note that there may be other 

components of angular momentum but their change is accounted for by torques applied on the 

axis to keep it fixed in space. Calculation of such torques will be discussed in later lectures. 

Suffices here is to say that these torques arise out of the constraint forces that enforce the 

constraint of the axis being fixed in space.  

Shown in figure 2 is a rigid body rotating about the z-axis with an angular speed ω. Also 

shown there is the position and velocity vector of one of its constituent particles of mass mi in a 

plane perpendicular to the rotation axis. We wish to calculate the z component of the angular 

momentum.  
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The z component will be given as  

 

For a particle at distance ρi from the z-axis and its radius vector making an angle Φi from the x-

axis  

 

so that  

 

Calling the moment of inertial about the rotation axis, we can write  

 

Depending on the direction of ω, angular momentum about an axis could have negative or 

positive values because it is a vector quantity. The convention we take is the right-hand 

convention; Let the thumb of one's right hand point in the positive z direction; if the rotation of 

the body is in the same (opposite) direction as the fingers, ω is positive (negative).  

Having defined the moment of inertia about an axis, we make a few comments on it. First thing 
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we notice about it is that it depends on the perpendicular distance of point masses from the axis 

of rotation. So no matter where we take the origin of the coordinate system, the moment of 

inertia of a rigid body about an axis is always going to be the same. Secondly, for continuously 

distribute mass moment of inertia is calculated as the integral  

 

where ρ is the perpendicular distance of a small mass element dm taken in the body (see figure 

3).  

 

Finally, for planar objects the moment of inertia is the same as the second moment of an area 

except that the area is replaced by the mass.  

We now calculate moment of inertia of some objects.  

A rod at an angle from the axis of rotation passing through its centre: This is shown in 

figure 4. The length of the rod is l and its mass m . It is at an angle θ   from the axis of rotation.  
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We take a small mass element of length ds at a distance s from the origin. It is at a distance 

from the axis of rotation. Then  

 

Thus for a rod rotating about its perpendicular passing through its centre is .  

Exercise: Calculate the moment of inertia of a disc rotating about an axis passing through its 

centre and perpendicular to it.  

   

Moment of inertia of disc about one of its diameters: Shown in figure 5 is a disc of mass M 

and radius R rotating about its diameter which lies on the y-axis.  
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To calculate the moment of inertia I take a strip of lengths width dx at distance x from the y-

axis, the axis of rotation. Its mass is (see figure 5). Thus  

 

The integration can be carried out easily by substituting and gives  

 

  

Moment of inertia of a sphere about one of its diameters: A sphere of mass M and radius R 

is shown in figure 6. To calculate its moment of inertia, we take a cylindrical shell of radius ρ 

and thickness dρ (see figure 6). The mass of this shell is given by  
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Therefore the moment of inertia is  

 

By substituting , this is an easy integral to perform and gives the result  

 

 Let us now recapture what we have done so far. We have looked at the angular momentum of 

a body rotating about a fixed axis. We find that angular momentum LZ about an axis (denoted 

as the z-axis) is given as LZ = IZ ω and, depending upon the sense of rotation, can take positive 

as well as negative values. We have also calculated IZ for some standard objects about an axis. 

We now go on to study the equation of motion satisfied by LZ . The equation satisfied by LZ is  
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where is the component of the external torque along the axis of rotation. If the external 

torque is zero, the angular momentum is conserved. You can observe the effect of conservation 

of angular momentum easily at home.  

Sit on a revolving chair holding a brick (or something similar) in each of your hands and keep 

your arms stretched. Start revolving the chair and then pull your arms in. You will observe that 

you start revolving much faster. This happens because when you pull the arms in, the masses 

that you are holding come closer to the axis of rotation resulting in a reduction in the value of 

the moment of inertia. However, since there is no external torque on the system, the angular 

momentum cannot change. Thus if the moment of inertia decreases, the angular speed must 

increase in order to keep L = Iω constant. This is precisely what you observe. You should also 

repeat the experiment holding different weights. When do you observe the rotational speed to 

increase the largest? Let us now solve an example of applying the angular momentum 

conservation principle.  

   

Example: A man starts walking on the edge of a circular platform with a speed v with respect 

to the platform (see figure 7). The platform is free to rotate. What is the rotational speed of the 

platform? Mass of the platform is M , its radius is R and the mass of the man is m .  

 

Since there is no external torque, the angular momentum of the system about the axis of 

rotation must be conserved. Thus as the man starts walking, the platform starts rotating the 

other way. Since the speed of man with respect to the platform is v , his speed in the ground 

frame would be   (v – ωR) . Thus the angular momentum of the man is  

 

At the same time, the angular momentum of the platform is  
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where the minus sign shows that the angular momentum of the platform is in the direction 

opposite to that of the man's angular momentum. By conservation of angular momentum  

 

which gives  

 

Having learnt about the angular momentum, its equation of motion and the conservation of 

angular momentum for rotations about a fixed axis, we now discuss the kinetic energy and the 

work-energy theorem for a rigid body rotating with angular speed w about a fixed axis.  

Kinetic energy and work-energy theorem for a rigid-body rotating about a fixed axis: The 

kinetic energy of a rigid body rotating with angular speed ω is obtained by calculating the 

energy of small mass element in the body and adding it up. This mass element is rotating in a 

plane perpendicular to the axis of rotation. This gives (using the notation of figure 2)  

 

The corresponding work-energy theorem for the motion considered here is that the change in 

kinetic energy is equal to the work done on the body. Let us first calculate the work done on a 

body, which can only rotate about an axis, when an external force is applied on it. To do this, I 

would first like you to prove a result (look at figure 2 for reference): when a body rotates by an 

angle Δθ about an axis in the unit vector direction , the corresponding change in position of a 

particle in the body at position vector is  

 

The total work done on the body by a net external force composed of forces acting at each 

point is  
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By using , we can write the work done as  

 

where τZ is the component of the external torque along the axis of rotation. Thus the total work 

done is  

 

Now the work energy theorem can be expressed as follows:  

 

   

This pretty much concludes what all I have to say about the rotations about a fixed axis. One 

question that may be asked at this point is: Why is it what describing dynamics in term of 

angular momentum, torque etcetera rather than momentum and force is more useful in 

discussing rotational motion. This is because in rotational motion, force, momenta etcetera are 

distributed and taking their moments by considering the angular momenta and torques 

automatically takes care of this distribution. We conclude this lecture by drawing a comparison 

between linear and rotational motion about a fixed axis.  

Linear motion  Rotational motion about a fixed axis  

Momentum p  Angular momentum L  

  

Impulse  Impulse  
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This correspondence will help in understanding and getting relationships to solve most of the 

problems involving rotations about a fixed axis, particularly if you have solved many problems 

involving linear momentum.  

   

Rigid body dynamics III: Rotation and Translation  

We have seen in the past two lectures how do we go about solving the rigid body dynamics 

problem by considering the rate of change of angular momentum. In the previous lecture, we 

concentrated on rotation about a fixed axis and solved problems involving conservation of 

angular momentum about that axis. In this lecture we consider what happens where an external 

torque is applied and also when the axis is allowed to translate parallel to itself.  

Let us first take the case when the axis is stationary and a torque is applied. Take for instance 

your pen or a scale and hold it lightly at one of its ends so as to pivot it there. Raise the other 

end so that the scale is horizontal and then leave it. You will see that the scale swings down. I 

would like to calculate the speed of its CM when the scale is vertical after being released from 

horizontal position (see figure 1). Assume that there is no loss due to friction. In this case I will 

solve this problem in two ways and also comment on a wrong way.  

 

I take the mass of the scale to be m and its length l. Then its moment of inertia about one of its 



222 
 

ends is .  

I first solve the problem using energy conservation. Since there is no loss due to friction the 

total mechanical energy is conserved. Therefore the total mechanical energy is conserved. Let 

us take the potential energy to be zero when the scale is horizontal. Since the scale starts with 

zero initial angular speed, its total mechanical energy is zero. When the scale reaches the 

vertical position, its CM has moved down by a distance so its potential energy is . 

If its angular speed at that position is ω, then by conservation of energy  

 

which gives  

 

I now solve the problem by a direct application of torque equation. When the scale makes an 

angle θ from the horizontal (see figure 2), the torque on it is given as  

 

 

The angular momentum-torque equation then gives  
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Substituting and the value of I from above this leads to  

 

This equation cannot be integrated with respect to time directly. Recall from the proof of work-

energy theorem that in such situations we change transform the equation to write it in terms of 

the displacement variable, which is the angle in this case. So we write  

 

to write the equation above as  

 

Integrating this equation then gives  

 

For this gives the same answer as obtained earlier. If you have noticed, what we have 

done here is actually used the work-energy theorem  

You may ask at this point: wouldn't the correct way of solving this problem be to equate the 

kinetic energy of the CM to the change in the potential energy. This would lead to  

 

The reason why this answer is incorrect is the following. Recall from our previous lecture that 

the most general motion of a rigid body is a translation plus a rotation. So while it is true that 

the CM is moving, the scale is also rotating at the same time. We represent the combination of 

the two motions as a translation of the CM and a rotation about an axis passing through the 

CM. Why we split the motion of the scale as a combination of the translation of its CM and a 

rotation about the CM - and not that of any other point in the body - will be discussed in detail 
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below. For now it is sufficient to say that by doing so the kinetic energy can be written 

conveniently as (KE of the CM plus KE about the CM). So the true K.E of the scale is  

 

where is the moment of inertia about the CM. Using the relationship 

  this gives the same kinetic energy as that used above in applying the energy 

conservation method. This correct approach then gives the same answer as obtained above.  

An interesting problem related to the one solved above is as follows. Sometimes if a book you 

are holding slips out your hand, it usually falls with its upper face down (see figure 3). You can 

try this at home and see for yourself. In fact there is an interesting book which has a title based 

on this observation. It is entitled "Why toast lands jelly side down" and is authored by Robert 

Ehrlich (Universities press, Hyderabad 1999). Let us try to understand this observation.  

 

When the book falls its angular acceleration α immediately after it slips off the hand is 

calculated approximately as given below  
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Here m is the mass of the book and l its length. I call it an approximate expression because in 

our calculation we have assumed the book to be in horizontal position. It will slip off when 

  or for small angles θ ~ µ, where m is the coefficient of friction between the book 

and the hand. Starting with zero initial angular speed, let the angular speed of the book when it 

slips out of the hand be ω . Then  

 

Taking µ = 0.5, g = 10ms
- 2

 and l = 20cm = 0.2m , we get  

ω = 8.7 rad s
- 1

  

After the book has come out of the hands, there is no external torque on it about its CM so it 

falls rotating with a constant angular speed of about 8.7rad s
- 1

. Keep in mind that the sense and 

amount of rotation of a rigid body is the same irrespective of the point about which its rotation 

is considered. So although before slipping out of the hand, I did the calculation for its angular 

speed taking its edge on the hand as the axis, after it comes out of the hand, I consider its 

motion as the translation of its CM and rotation about its CM. Let us stake a typical height of 

about 1m from which the book falls. Then the time it takes to reach the ground is  

 

Thus the angle through which the book rotates by the time it reaches the ground is  

 

If we add to this angle the initial rotation of θ = µ = 0.5, the angle increases to about 250°. The 

angle of rotation of course varies in a range but it is around 180°.You see that the book has just 

the right angular speed and the time of fall for it to turn by around 180°. That is precisely what 

we observe.  

 

Rotation of a rigid body combined with translation of the axis parallel to itself:  
Let us now introduce translation of the rotational axis parallel to itself - it may even accelerate 

- and ask what kind on motion is going to follow. So for example there may be a rod on a 

horizontal table and is hit by an impulse one end, and we may be interested in its subsequent 
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motion. I general it could be a rigid body of general shape on which we apply a force. We split 

the motion into a translation of the CM of the body and rotation about an axis passing through 

the CM. By doing so the equation of motion for the translational motion of the CM is very 

easy. It is  

 

Here is the total momentum of the body; M is its mass;   the acceleration of the CM 

and the total applied force. With this equation we know how the CM of the body 

translates. Next we wish to find the rotation of the body with respect to an axis passing through 

the CM (recall that the most general motion of a rigid body is translation of a point and rotation 

about that point). But the question is: can we apply  

 

where   is the angular momentum about the CM and is the applied torque 

about the axis of rotation passing through the CM. I raise this question because in general the 

CM will also be accelerating and therefore with respect to the CM, there will be a fictitious 

force that may also give rise to a fictitious torque which is in addition to the applied torque 

. However, it is easy to see that such a fictitious torque about the CM will always 

be zero. This is because the fictitious force effectively acts at the CM itself. Because of this 

reason, there is one more point about which the torque due to the fictitious force vanishes: this 

is the point that accelerates towards the CM. Thus the equation above can be applied safely 

about these two points. There is also a third point about which the above equation is valid. This 

is the point that does not accelerate at all. Let me now prove these statements.  
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Shown in figure 4 is a rigid body performing a general motion, i.e. it is both translating as well 

as rotating. For convenience we have shown the body in two dimensions. Two points J and i of 

the body are also shown. These points are also moving with the body. We now calculate the 

rate of change of the angular momentum about point J . This is done below.  

 

where all the terms have their standard meaning and the subscript (iJ) denotes the quantity 

being calculated for point i with respect to point J . Denoting the velocity and acceleration of 

point i about the origin O as , respectively, and that of J as , we have  

 

With , where is the position vector of the CM 

with respect to J , we get  
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If we want the rate of change of the angular momentum to depend only on the applied torque 

calculated about J, we should have  

 

That will happen under the following three conditions:  

 

I have just shown you that irrespective of the whether point J is accelerating, rotating or 

performing some general motion, the equation  

 

can be applied about J if it satisfies one of the three conditions obtained above. Notice that in 

under these conditions the right-hand side has only the externally applied torque. Thus if we 

choose one of these points to apply the angular momentum-torque equation, we do not have to 

worry about any fictitious torques arising because we are sitting on an accelerating point. We 

have been applying the angular momentum-torque equation about points satisfying condition I 

above; it includes stationary points also. Of the other two points, it is always safer to apply the 

equation about the CM (condition II ). This is because of the difficulty in ensuring that a point 

is accelerating towards the CM (condition III ), although in some situations it may be easy. We 

will discuss one such case below. We now solve some simple examples to illustrate what we 

have learnt above.  

Example 1: A uniform rod of mass m and length l is on a smooth horizontal table (friction = 0) 

and is hit at one of its ends so that an impulse J is imparted to it in its perpendicular direction 

(see figure 5). What is its subsequent motion?  
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As the rod is hit, its CM will start moving with a velocity  

 

At the same time the rod also starts rotating. Although the CM will be accelerating during the 

impact, we can apply the angular momentum-torque equation about it with only external torque 

in the equation. If the angular speed of the rod after the impact is ω, it is given by  

 

Note that in the sentence above, I have said 'angular speed of the rod' and not 'angular speed of 

the rod about the CM because the sense and amount of rotation about any point in the body is 

the same, as was discussed in a previous lecture. The position and orientation of the rod some 

time after the impact is also shown in figure 5.  

   

Example 2: A wheel of mass m and radius R is sliding on a smooth surface (No rolling) with 

speed V. It then hits a very rough surface so that it starts rolling (see figure 6). What is it 

rolling speed?  
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Let the rolling speed of the wheel be V1 . As soon as the wheel hits the rough surface, it gets an 

impulse J at its point on the surface in the direction opposite to its velocity. This reduces its 

speed and also makes it rotate. It rolls if the speed V1 of its CM is equal to ωR , where ω  is the 

rolling speed it gains after hitting the rough surface. The change in the CM speed is given by  

 

Applying the angular-momentum torque equation about the CM, we get  

 

With the condition of rolling, , the above two equations give  

 

I would like you to repeat the same exercise for a disc.  

The problem can also be solved by applying conservation of the point of impact on ground, 

because the impulse gives zero torque about that point. The initial angular momentum of the 

wheel with respect to that point is mVR . The final angular momentum is (angular momentum 

of the CM plus angular momentum about the CM). This comes out to be (mV1R + mR
2
ω) . 

Equating this to mVR and using the rolling condition gives the same answer as above. A 

warning: keep in mind that the torque is being taken with respect to the point on ground and 

not the point on the wheel that is touching the ground. Doing that will not be correct because at 

the time of impact the point on the wheel is accelerating in the direction opposite to .  

I now solve a problem that involves, in addition to the equations above, energy conservation 

also.  
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Example 3: A rod of mass m and length l is held making an angle Φ from the horizontal at a 

height h from the floor (see figure 7). When dropped from rest, what will be its linear and 

angular speed after it rebounds from the floor? Assume no energy is lost during the impact 

with the floor.  

 

When the rod hits the floor, it receives an impulse J from the ground in the vertically up 

direction. Although the rod is also being acted upon by its weight, we neglect its effect during 

impact (see discussion in the lecture on momentum). Since all the forces are in the vertical 

direction, the CM of the rod also moves only vertically. Before hitting the floor, the speed of 

the CM is and the angular speed of the rod is zero. Let the rebound speed of the CM be 

V and the angular speed of the rod after rebounding be ω. Then similar to the example above, 

these quantities are related as (keep in mind that we are dealing with vector quantities so their 

signs have to be properly accounted for)  

 

These are two equations for three unknowns: V, ω  and J. We therefore need one more 

equation. This is provided by energy conservation. We express the kinetic energy of the rod 

after it rebounds as the sum of the kinetic energy of its CM and the kinetic energy about its 

CM. Thus immediately after the impact, energy conservation gives  
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Now we have three equations that can be solved for the three unknowns. This is left for you to 

do.  

Question you might now ask is if we could use the principle angular momentum and energy 

conservation directly to solve this problem in a manner similar to what we did at the end of the 

last example. We would like to apply the conservation of angular momentum about the point of 

impact on the ground because torque due to the impulse about this point vanishes. Although 

there is another external force - the weight of the rod - acting on the system, its effect during 

the impact can be ignored because very short duration of impact. Thus we can say that the 

angular momentum about the point of impact is conserved. This gives (left as an exercise for 

you)  

 

This is the same equation that is obtained by combining the first two equations above. Thus we 

obtain the same answer by this method also.  

I end this lecture by giving you an exercise.  

Exercise: A disc of mass m and radius R is made to roll on a rough surface by applying a force 

F at its centre. If it does not slip on the floor, i.e. it does pure rolling, find its acceleration by 

applying methods developed in this lecture.  

Rotational dynamics IV: Angular velocity and angular momentum  

In the previous three lectures, we have dealt primarily with rotation about a fixed axis or an 

axis moving parallel to itself. What we saw in those lectures was that dynamics of a rigid body 

is described by and in the absence of the angular momentum is a 

conserved. In the case of fixed axis rotation, the relationship between the angular momentum 

and the angular speed was quite straight forward in that and all that was done in those 

problems was to change the magnitude of ω to change L. But the rotational motion is much 

more interesting than that. For example is a vector so it could change direction because of 

applied torque with or without its magnitude being affected. How the changing direction of 

affects the orientation of a rigid body is one question we should answer if we wish to 

understand the motion of a rigid body. To start with, I want to point out to you that rotational 

motion is sometimes not what one would expect naively.  

You must have played with a top. If it is not spinning and we try to make it stand on its pivot, it 
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falls sideways. On the other hand, if it is given a spin and then put on its pivot point, it does not 

fall but starts to move about, what is called precession, a vertical axis passing through its pivot 

point. This is shown in figure 1. Obviously the precession of the top has something to do with 

its spin.  

 

My second observation is from something that is seen in science museums. You can also make 

it easily in your local workshop. Take a track with many soft curves on it and let three different 

shape rollers roll on it. You may want to keep the track slightly tilted so that the rollers roll by 

themselves. Question is which of the rollers will be able to negotiate all the curves.  

 

I make the third observation on a rectangular box of sweets (empty of course) or any similar 

box. Put a rubber-band around it so that its lid does not come off. Hold the box at a height with 
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one of its faces perpendicular to the vertical, give it a spin and let it drop (see figure 3). 

Observe how its spin changes when it is falling down. You will find that in two out of three 

possible ways of holding the box, its spin will remain essentially unchanged whereas in one 

case it will start wobbling. On the other hand, if the box is dropped without giving it a spin, it 

comes down in the same orientation. What does the spin do to it? We wish to understand this.  

 

In all three cases we see that when an object is given a spin its motion is very different 

compared to when it is not spinning. This happens because the angular momentum of the 

object due to its spin changes direction during the motion and the orientation of the body 

changes accordingly. So we now really have to get into the vector nature of angular momentum 

and relate it to the parameters - the angle and the angular speed / velocity - of the body. I 

develop this structure of three-dimensional rigid-body dynamics step-by-step. The first 

question we address in this development is if the angle of rotation θ can be expressed as a 

vector ? And if the answer is yes, what is its direction?  

The answer to the question whether an angle of rotation can be treated as a vector is in the 

negative. This is because it fails to satisfy a fundamental property - that the addition of vectors 

is commutative - of vector addition. Thus if we make two rotations of angles θ1 and θ2 about 

two different axes, the end results will not be the same if the order of rotations is changed. This 

is depicted in figure 4 where I show a rectangular box that is to be rotated by 90° about the x 

and the y axes. The x and y axes are in the plane of the paper and pass through the centre of the 

box; the z-axis is coming out of the paper. The results are different if (a) I do the rotation about 

the x-axis first and then follow it with a rotation about the y-axis, and (b) I do the rotation 

about the y-axis first and then follow it with a rotation about the x-axis. Thus θ1 and θ2 cannot 

be treated as vectors because .  
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Mathematically let us take a rod of length l lying along the x-axis with one of its ends at the 

origin so that the (xyz) coordinates of its other end are (l, 0, 0). Keeping its end at the origin 

fixed, the rod is rotated about the x and the y axes in the same manner as the box in figure 4. If 

rotated about the x-axis first the end still has coordinates (l, 0, 0). Now the rotation about the y-

axis makes the rod align with the z-axis with the new coordinates of its end being (0, 0, - l) . 

Let us perform the rotations in the other order now. The first rotation is performed about the y-

axis and makes the rod align with the z-axis with the new coordinates of its end being rod (0, 0, 

- l) . Now the rotation about the x-axis makes the rod align with the y-axis and the final 

coordinates of its end are (0, l, 0) . Thus we see that two rotations have absolutely different 

effect on the orientation of a body depending on their order. This is demonstrated in figure 5. 

The conclusion therefore is that rotations in general cannot be treated as vectors .  
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Although rotations by a finite angle are no vector quantities, rotations by infinitesimal angles 

Δθ are. This also makes the derivative a vector quantity. We therefore call this 

quantity angular velocity rather than angular speed. Let me first show you through a simple 

example that infinitesimal rotations do satisfy the commutative property of vector addition and 

then go on to assign a direction to such rotations 

Let me again take a rod lying along the x-axis with one end fixed at the origin and the other at 

(l,0,0). However, this time I consider infinitesimal rotations about the y and the z axes. I do so 

because I want both the rotations to cause change in the orientation of the rod; first rotation 

about the x-axis does not do that. Before I present the calculations, I would like you to recall 

from the first lecture how different components of a vector change when the frame is rotated. I 

would be making use of those relationships now with one change: rotating a vector by an angle 

Δθ about an axis is same as viewing it from a frame rotated by the angle -Δθ about the same 

axis. I perform a rotation of the rod about the y-axis by an angle Δθy and that about the z-axis 

by angle Δθz. Let me first consider the case of rotation about the y-axis that is followed by a 

rotation about the z-axis. Rotation of the rod about the y-axis gives the new coordinates of it 

free end as  
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Now rotate the rod about z-axis to get coordinates of its free end as  

 

Let us now do it the other way. Rotation about the z-axis gives  

 

Now give a rotation about the y-axis to get  

 

When we compare the two boxed results above, we find that the coordinates of the end point of 

the rod come out to be the same. We conclude that two infinitesimal rotations will give the 

same final result irrespective of the order in which they are applied. Thus infinitesimal 

rotations can be treated as vectors . But what about the direction of rotation? To assign a 

direction, notice that the change in the position vector of the end coordinate of the rod 

considered above can be written as  

 

where I have written the second line above to emphasize that the order in which infinitesimal 

rotations are performed does not affect the end result of these operations. The equations above 

suggest that an infinitesimal rotation about an axis be assigned a direction parallel to the axis 

following the right hand convention: If the thumb of the right hand points in the direction of 

the infinitesimal rotation, the movement of fingers gives the sense of rotation. With this 

definition, the change in the position vector of a point after it is rotated by an infinitesimal 

angle Δθ about an axis in the direction of unit vector (sense of rotation given by right hand 

convention) is given as  

 



238 
 

It is obvious that the vector . The corresponding derivative with respect time is 

called the angular velocity, usually denoted by . Thus  

 

I now point out that although the above equation is written for a position vector, there is 

nothing in its derivation that limits it to position vectors only. It is in fact true for any vector as 

can be easily proved by replacing the (xyz) coordinates by the corresponding components of 

the vector in the derivation above. Thus if a vector is given an infinitesimal rotation 

, its will change by  

 

This is shown pictorially in figure 6.  

 

Let us now see how much does a vector change when we apply two infinitesimal rotations 

about two different axes. Let the vector be denoted by after the first rotation 

and by after the second one. Then we have  
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thereby showing that for several infinitesimal rotations the final effect can indeed be expressed 

by adding the effect of each one of them.  

Next we consider the rate of change of a vector rotating with an angular velocity . It is 

obtained as follows:  

 

This is the rate of change of a vector only due to its rotation. If it changes additionally due to 

some other causes, that has to be added to the above change separately. If we take the vector 

to be the position vector , we get the formula  

 

for linear velocity of a particle due to pure rotation of its position vector.  

You may ask this point why is it that we want to take as vector quantities. The answer is 

that we in doing our calculations, we should know whether a quantity is a scalar or a vector or 

something else so that mathematical operations on it can be appropriately defined. For 

example, now that we know that is a vector quantity, we can take its components and deal 

with them independently. Let me give you an example.  

   

Example 1: A ball is given a spin at speed w and then put on a rough floor with making an 

angle q with the vertical. When the ball eventually rolls, what would be its rolling speed (see 

figure 7)?  
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In solving this problem, I make use of the vector nature of and split it into its two 

components. It is the horizontal component that is responsible for making the ball roll. 

The vertical component does not contribute to rolling, as you well know. Further, this 

component eventually goes to zero due to friction. So the question is: if a sphere rotating with 

angular speed is kept on a rough floor with axis of rotation horizontal, what is its find 

rolling speed. I will let you figure that out. The point that is emphasized here is that knowing 

that is a vector quantity helped us to solve the problem easily.  

Now that we know is a vector, the next question we ask is: how does change when an 

external torque is applied on a body? So far we have learnt that external torques change 

angular momentum . So to know how changes, we should know the relationship between 

. We derive this relationship next.  

Angular momentum of a rigid body rotating with angular velocity : We now derive the 

relationship between the angular momentum of a body rotating in space with one point fixed. 

That means the body is not translating and has only three degrees of freedom. By definition, 

the angular momentum  

 

For a rigid body rotating with one point fixed, I have derived above that . With  

 



241 
 

we get  

 

This gives the three components of the angular momentum to be  

 

 

 

This is usually written in the matrix form  

 

The (3 x 3) matrix in the equation above is known as the moment of inertia tensor. Its diagonal 

terms  

 

are the moments of inertia about the x , y and the z -axis, respectively. The off-diagonal terms  

 

are known as the products of inertia. The values of the moments and products of inertia depend 

on the set of axes chosen.  
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So you see that relationship between is quite involved. Luckily, for a rigid body, for 

each point one can find a set of axes about so that products of inertia about that point vanish. 

These are known as the principal axes. Thus for the principal set of axes at a point  

 

These axes are attached with the body and rotate with it. However, the principal axes offer an 

advantage when dealing with the angular momentum of a rigid body. At a given time, if I 

calculate the components of the angular momentum by taking the rigid-body to be rotating in 

the principal axes frame at that instant, they turn out to be simply Lx =Ixx ωx , Ly =Iyy ωy and Lz 

=Izz ωz . Thus the angular momentum of the body is given as  

 

at any given instant. It is easily seen from the expression above that in general the angular 

momentum and the angular velocity are not parallel; they will be parallel only if 

, i.e. if all three moments of inertia about the principal axes are equal. This is shown in figure 8 

in two dimensions.  

 

Let me now solve an example.  

   

Example 2: A thin massless rod of length 2l has a point mass m at both its ends. It is rotating 
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with angular speed w about a vertical axis passing through its centre and at an angle θ from it, 

as shown in figure 9. Calculate its angular momentum.  

   

 

We will apply the formula for angular momentum derived above. It is easy to see that at the 

centre of the rod, the principal axes are: one axis parallel to the rod and two of them 

perpendicular to it. These are shown in the figure above. Notice that the principal axes rotate 

with the body. The moment of inertia with respect to the principal axes shown in figure 9 are  

 

The components of the angular velocity along the principal axes are  

 

Thus the angular momentum is given as  

 

This is also shown in figure 9. It is clear from the figure that as the body rotates so does its 

angular momentum vector. Thus the angular momentum of the body changes with time 
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although its magnitude remains unchanged.  

I end this lecture by asking you to solve a similar problem.  

Exercise: A rectangular thin sheet of sides a and b is rotating about one of its diagonals (see 

figure 10) with angular speed ω. The mass of the sheet is m. What is its angular momentum? 

Express it in terms of the principal axes unit vectors.  

 

   

Lectures 22 & 23  

Rotational dynamics V: Kinetic energy, angular momentum and torque in 3-dimensions  

   

You learnt in the previous lecture is that the angular velocity is a vector quantity pointing in 

the direction of the axis of rotation. Any vector that is rotating about also changes direction. 

Thus the vector changes even if its magnitude is constant. If the vector is then its rate of 

change purely on the basis of rotation is  

 

Thus the velocity of a rotating particle at position from the origin is  
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I also derived the general expression for the angular momentum, which is given as  

 

Here are the moments of inertia about the x, y and the z axes, respectively. The 

off diagonal elements like Ixy are the products of inertia. A simplification in the expression 

above arises by employing the principal axes for which the products of inertia vanish. For 

convenience in writing, the principal axes are usually denoted by (1,2,3 ) instead of (x,y,z). 

Using this notation the angular momentum vector can be written in a simple form as  

 

where ω1 , ω2 and ω3 are the components of the angular velocity along the principal axes. I 

now derive the expression for kinetic energy for a rigid body rotating with one point fixed.  

   

Kinetic energy of a rotating rigid body: I consider a rigid body rotating with angular velocity 

. Its kinetic energy T is calculated as follows  

 

Substituting   for of the velocities above and making use of some identities of vector 

products we get  

 

In the principal axes therefore  
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This is the expression for the kinetic energy in terms of the principal moments of inertia and 

the components of angular velocity along the principal set of axes. Having obtained the general 

expressions for the angular momentum and kinetic energy of a rigid body, we now study the 

dynamics of a rigid body through the angular-momentum torque equation. Along the way I 

will explain the three observations that I had started my previous lecture with.  

   

Dynamics of a rigid body: Dynamics of a rigid body is governed by the equation  

 

and it is this equation that governs everything about the rigid-body rotation. What makes the 

motion of a rigid-body interesting is that there is a fantastic interplay between the angular 

momentum, angular velocity of a rigid body with or without an applied torque. For example if 

the angular velocity and the angular momentum of a rigid body are not parallel, the vector 

would rotate about and that would make change. However, if there is no torque applied on 

the body, angular momentum cannot change. Therefore to compensate the change in arising 

from its rotation, the angular velocity itself must change. Changing would make body 

rotate in a different way and this goes on. It is thus this interplay between and that makes 

a rigid body move in seemingly counterintuitive ways.  

As a body rotates, its angular momentum changes on two counts: first because in general 

and are not parallel and therefore rotates about . With  

 

and  

 

the rate of change of only due to its rotation about is given as  
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If the components ω1 , ω2 and ω3 were also changing, I would have to add an additional term 

on the right-hand side of the expression above to take care of that. This is the second reason for 

the change in angular momentum of the body. For the time being I focus on cases where the 

components of along the principal axis remain unchanged. This in turn implies that the 

magnitude of the angular momentum remains constant during the rotational motion of the 

body. This happens when the applied torque is always perpendicular to the angular momentum. 

Substituting for L1 , L2 and L3 in the equation above, I get  

 

So at any instant the components of   are  

 

For a geometric interpretation of these equations I urge you to go back to the previous lecture 

and see how we obtained the changes in the coordinates of the end of a rod rotating 

infinitesimally. This gives the components of the torque required to be  

 

To apply these equations I start with calculation of torque for the example that we solved at the 

end of the previous lecture.  

Example 1: A thin massless rod of length 2l has a point mass m at both its ends. It is rotating 

with angular speed w about a vertical axis passing through its centre and at an angle θ from it, 

as shown in figure 1. If the axis of rotation is held at its two ends by ball bearings, calculate the 

force that the ball bearings apply on the axis. The ball bearings are placed symmetrically from 

the centre of the rod at a distance d each.  
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Recall from the previous lecture that I had taken the principal axes (1,2,3 ) with (1,2) as shown 

in figure 1 and axis 3 perpendicular to them. The moments of inertia about the principal axes 

are  

 

The angular velocity and the angular momentum of the rod-mass system are  

 

and  

 

All the parameters - mass m , length l and angle θ - in the equation above are constant so the 

magnitude of the angular momentum is also a constant. As such we can apply the formulae 

given above to get the components of the torque to be applied as  
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Thus the torque needed to keep the rotating rod in its position is in the direction of principal 

axis 3 of the body. As was noted above, the torque is indeed perpendicular to . The torque is 

provided by the forces applied by the bearings. When the rod is in the plane of the paper, as 

shown in the figure, the force would be to the left at the upper end and to the right at the lower 

end of the rod (see figure 1). And their magnitudes will be equal since the CM of the rod has 

zero acceleration. Thus the forces provide a couple equal to . Their magnitude is  

 

There is another method of calculating that we describe now. has one component 

in the direction of and the other component 

  perpendicular to (see figure 2).  

 
 

As the rod rotates LV remains unchanged but LH sweeps a circle with angular frequency . 

The rate of change of is therefore the same as that of LH . The magnitude of the latter is ωLH 

. Since at the position shown, the tip of LH is moving out of the paper, the direction of the 

change in LH   is also the same. This is the direction of principal axis 3. It thus follows that  

 

in the direction of principal axis 3. For completeness I also calculate the kinetic energy of the 

rod-mass system. It is  
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I now give you a couple of exercises similar to the problem above.  

   

Exercise 1: In the problem above, if the axis of rotation passes through a different point than 

the centre of the rod (see figure 3), what will be the forces applied by the bearings with 

everything else remaining the same? ( Hint: the CM is now moving in a circle )  

 

Exercise 2: For the rotating objects shown below in figure 4, calculate the rate of change of 

their angular momentum by the two methods employed in the example above.  
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If you have followed the example above, and have also done the exercises suggested, then you 

will be in a position to understand the explanation of two of the three observations I started my 

previous lecture with. The two observations were the precession of a spinning top and only one 

roller of the three shown being able to go over a curved track entirely.  

Example 2: Let me take the case of the precession of a spinning top. In this case we observe 

that when a spinning top is put on a floor and its lower point is held at one point, it starts 

precessing about the vertical axis (see figure 5)  

 

I take the mass of the top to be m, its moment of inertia about the spinning axis I , distance of 

its CM from the pivot point l and its spinning rate to be ωs. The top's axis is making an angle θ 

from the vertical. Let us take the rate of precession, i.e. the angular speed at which the top 
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starts to rotate about the vertical to be Ω. It is observed that Ω is usually much smaller than ωs. 

So in calculating angular momentum we are going to take it as arising from the spin only and 

neglect any contribution of Ω to it. The angular momentum is then along the spin axis of the 

top and its magnitude is , where I is top's moment of inertia about its axis. Further, 

there is torque acting on the top due to its weight. The magnitude of the torque is mgl sinθ and 

it is perpendicular to the plane formed by the vertical and the spin axis (the direction of ). At 

the position shown in figure 5, the torque is going into the plane of the paper. The problem 

then reduces to the following. A rigid body has an angular momentum and is being acted 

upon by a torque of magnitude mgl sinθ perpendicular to . What will happen to the body?  

Since the angular momentum is being acted upon by a torque perpendicular to it, it changes 

continuously with time with its magnitude remaining unaffected. Thus it moves on the surface 

of a cone as shown in figure 6.  

 

Let me now calculate the frequency of rotation of vector . For this I again look at the vertical 

LV and horizontal LH components of the angular momentum, as shown in figure 6. The vertical 

component remains unchanged and the horizontal component changes at the rate as the 

vector rotates. This gives , which should be equal to the torque. 

Substituting , I thus get  
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This is the rate at which the vector rotates. Since is attached to the top, the top also rotates 

at the same rate. is then the rate of precession of the cone.  

As the top precesses, its CM moves in a circle. You may now wonder where does the 

centripetal force for this come from? This is provided by the horizontal reaction or the 

frictional force at the pivot point. Second question you may raise is why is it that the 

component LH starts moving in a horizontal circle due to the torque while the vertical 

component does not move in a vertical circle. In the actual motion, it does. So in addition to the 

precession, the axis of the top also oscillates up and down with very small amplitude. If you are 

careful in you observations, you will see this motion. This is known as the nutation of the top. 

In our present treatment, we have ignored this motion and solved the problem only to get the 

precession rate.  

I now wish to explore if to get this answer, I could equivalently have used the equations  

 

To do this, let me first identify the principal axes of the cone at the pivot point and label them. 

The principal axes are the spin axis and two other axes perpendicular to it. These are shown 

and labeled (1,2,3) in figure 7; in this position axes 1 and 2 are in the plane of the paper and 

axis 3 is coming out of it.  

 

The moments of inertia about the principal axes are . The components of 

at the instant (I take it to be time t = 0 ) shown in figure 7 are  
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Substituting the values of moments of inertia and the angular velocity components in the 

equations for the components of the torque gives  

 

This is not the same answer as obtained earlier. Where have we gone wrong? Is the previous 

answer correct or is this answer correct? We will see later that in applying the equations above, 

we have not taken into account the fact that due to the spin of the top, its principal axes also 

spin about axis 1 and that makes the components of along them time-dependent. For now I 

move on to explain the observation about only one of the rollers being able to go over all the 

curves of a track.  

   

Example 3: If you have performed the experiment, you would have seen that only roller 1 (see 

figure 8) that is tapering down as we move away from its centre is able to go over all the 

curves. Let me now explain that.  

 

As a roller goes over a curve, its centre of mass moves requires a centripetal force to do so. At 

the same time, the angular momentum of the roller also changes direction and that requires a 

torque. Both the centripetal force and the torque are provided by the normal reaction of the 

track on the rollers. These reaction forces on the three rollers are shown in figure 9.  

 

In analyzing the motion of these rollers, I am taking them to be moving into the paper. Thus 

the direction of their angular momentum is to the left, as shown in the figure. Now if these 

rollers have to make a turn, the normal reactions should provide the required centripetal force 

in the horizontal direction. This rules out the plain cylindrical roller (roller 2) from making any 

turn because both normal reactions on it are in the vertical direction. This leaves the other two 

cylinders for further consideration. For those rollers, the torque of the normal reaction forces 

about the CM should change their angular momentum vector in the appropriate direction. Let 

us look at roller 1 first.  

Roller 1: For a left turn, N1 < N2 for centripetal force. Therefore the torque generated by them 

is in the direction coming out of the page. As the roller makes a left turn, the associated change 

in its angular momentum also is in the direction coming out of the page, consistent with the 
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torque generate. For a right turn by this roller, the centripetal force is to the right so N1 > N2 . 

This generates a torque about the CM that goes into the page. For the right turn, the change in 

the angular momentum is also into the page, consistent with the torque generated. Thus for 

roller 1 , the centripetal force and the torque generated are consistent with the centripetal force 

and the change in its angular momentum. Let us now see what happens to roller 3 .  

Roller 3: If roller 3 turns left, the centripetal force will be provided correctly if N1 > N2 . This 

however gives a torque about the CM that is going into the page. On the other hand, during left 

turn the change in the angular momentum comes out of the page. Thus the torque and the 

change in angular momentum are in opposite directions. Exactly the same situation arises for a 

right turn. Because of this inconsistency, the roller fails to turn at any of the curves. This 

example teaches us about the centre of mass motion combined with angular momentum 

changes about the CM. We now move on to discuss the general form of the equation relating 

the torque and the angular momentum.  

The general equation governing rotation of a rigid body:  

Having dealt with situations where components of are constant, we now ask what happens 

when is also changed. For this let me look at the expression for the angular momentum in 

the principal axis frame again. It is  

 

I now give a slightly different derivation for the rate of change of . In doing this derivation I 

keep in mind that as a rigid body rotates, the unit vectors along its principal axes also rotate 

and their rate of change is (see previous lecture)  

 

Now I differentiate to get  

 

Here the first term is due to the change in the components of along the principal axis and the 

second term is the change in due to its rotation. Notice that we recover the formula derived 
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earlier if the components of do not change with time, i.e. . Let me repeat 

the interpretation of the equation: at any instant we take the body rotating in the principal axes 

frame at that time, i.e. the frame is frozen at its position at that time and the body is taken to be 

rotating in it. To see this geometrically, let me take a two-dimensional case. Shown in figure 10 

are the principal axes 1 and 2 of a rigid body at times t and (t+ Δt) . In time interval Δt the body 

and the frame attached to it rotate by an angle , and ω1 and ω2 change to ω1 + Δω1 

and ω2 + Δω2 . With these changes let me calculate changes in the components L1 and L2 in the 

frame frozen at time t .  

 

Looking at the figure, where I have shown all the changes that have taken place during the time 

interval Δt , we get in the frame at time t  

 

and  

 

So the total change in the angular momentum is  
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Dividing both sides by Δt and taking proper limit gives  

 

This gives you some idea about where this equation comes from. Of course in a more accurate 

treatment, rotations about the other axes also have to be taken into account. For infinitesimal 

rotations, they can all be added up and give the general equation  

 

This gives  

 

Each one of these rates of change should be equal to the component of the torque in that 

direction .Thus  

 

These are the most general equations governing the dynamics of a rigid body and are known as 

Euler's equations. I now use it to explain the third experiment I had suggested in the beginning 

of Lecture 21.  

   

Example 4: Hold a rectangular box at a height with one of its faces perpendicular to the 

vertical, give it a spin and let it drop (see figure 11). Describe its subsequent rotational motion.  
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This is an example of torque-free ( ) motion because there is no torque on the box about 

its centre of mass. Thus its rotational motion is governed by the equations  

 

For a box similar to the one shown in figure 11 we would generally have I3 > I2 > I1 .  

Let me first consider the case when the box is given a spin about its principal axis 1. Let me 

also assume that in the process I also disturb it and give it very small angular velocities ω2 and 

ω3 about its axes 2 and 3, respectively. Since both ω2 and ω3 are very small, their product is 

second-order in smallness and will be ignored. The Euler equations and there are then as given 

below.  

 

The first equation implies that ω1 is a constant. Let me call it the spin rate ω0 . Using this fact 

the other two equations are dealt with as follows. Differentiate equation (II) with respect to 

time to get  

 

and substitute for from equation (III) to obtain  
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Since I3 > I2 > I1 , the equation above is of the form  

 

Its solution is of the form  

 

One can similarly get equation for ω3 also and see that it also has similar oscillatory solution. 

This implies that as the box falls down it spins about axis 1 and oscillates about axes 2 and 3. 

Since magnitudes of ω2 and ω3 are small, you see the box fall essentially spinning only. The 

same thing will happen if we give initial spin about axis 3. However something different 

happens when the initial spin is about axis 2. Assuming ω1 and ω3 to be small, in this case the 

Euler equations take the following form right after the release of the box.  

 

The second equation above implies that ω2 is a constant and with I3 > I2 > I1 , the other two 

equations take the form  

 

Solution of these equations is of the form  

 

which indicates that right after the release, the angular velocities about axes 1 and 3 will grow 

very fast and take on a large value. Thus the box will start rotating about all three axes and that 

is what you observe. Thus we see that a rigid body is stable when it is given a spin about the 

axes having the smallest or the largest moment of inertia. However, if given a spin about the 

axis with intermediate moment of inertia, it will be unstable. Next I take up the case of 

precessing top that I had not solved by employing Euler's equations earlier. This is an example 

where a torque is also being applied on the system  
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Example 5: Apply Euler's equations to a precessing top and get its precession frequency Ω. 

The top has a mass m and is spinning at a rate of ωS (see figure 12). Its centre of gravity is at a 

distance l from the pivot point.  

 

I have already discussed about the principal axes of the top in example 2 above. With 

the Euler's equations for the top are  

 

Now in applying Euler's equations you have to keep in mind that the top is spinning. As such 

its principle axes 2 and 3 also rotate about axis 1 with angular frequency ωS . So the 

components of angular frequency and torque in the direction of these axes also change with 

time. Taking time at which the position of the top is shown in figure 12 to be t = 0, I draw in 

figure 13 the position of axes 2 and 3 at time t . In this figure, I have neglected the angle W t 

through which the top and therefore the torque vector itself has rotated. In other words I have 

assumed that . Thus the angular velocity and torque are shown where they were at t = 

0 .  
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Looking at figure 13, it is clear that the components of the angular velocity and the torque are  

 

Substituting these in the Euler's equation for the top gives  

 

The first of these equations gives ω1 = constant = ωS. The other two equations give the same 

answer which is  

 

This is the answer that we have seen earlier. In solving the Euler's equations for the top, we 

made the assumption of . Further we assumed that the top only precesses about the 
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vertical. However, there is no reason why it cannot posses a horizontal angular velocity ΩH 

also. Assuming the existence of Ω and ΩH and then solving the Euler's equations will give a 

more complete solution for the motion of a spinning top. It in fact gives the nutating motion 

also. You may want to try getting this general solution.  

With this lecture I end of the topic of rigid-body rotation.  

Lecture 24  

Harmonic oscillator I: Introduction  

Having analyzed the motion of particles in different situations, let us now focus on a very 

special kind of motion: that of oscillations. This is a very general kind of motion seen around 

you: A partial moving around the bottom of a cup, a pendulum swinging, a clamped rod 

vibrating about its equilibrium position or a string vibrating. A good first approximation to 

these motions is the simple harmonic oscillation. Let us see what does that mean? At a stable 

equilibrium point, the force on a body is zero; not only that, as a particle moves away from 

equilibrium, its potential energy increases and it is pulled back towards the equilibrium point. 

Thus around a stable equilibrium point x0 (for simplicity, let me take one-dimensional motion) 

the potential energy   can be written as  

 

Since at an equilibrium point, the force F(x0 ) on the particle vanishes,  

 

Further, because Φ(x) has a minimum at x0 , this gives  

 

Writing   I get  

 

and the corresponding equation of motion for a mass m as  

 

As I will show a little later, the solution of this equation is of the form  
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and is known as the simple harmonic motion. It is the simplest possible motion about a stable 

equilibrium point. Of course if k = 0 , the force will have higher order dependence on y and the 

motion becomes more complicated. Further, even if , if we include higher order terms, 

the resulting motion will become more complex. It is for this reason that we call the motion 

above simple harmonic motion. We will see that this itself is quite a rich system. A system that 

performs simple harmonic motion is called a simple harmonic oscillator. A prototype if this 

system is the spring-mass system with k being the spring constant and m the mass of the block 

on the spring (figure 1).  

 

In these lectures, I will talk about the motion of this system and how it is represented by a 

phasor diagram. I will then introduce damping into the system. The simplest damping is a 

constant opposing force like friction and next level is a damping proportional to the velocity. 

Then I will apply a force on the system and see the motion of force damped and undamped 

oscillator. Along the way, I will solve many examples to show wide applicability of simple 

harmonic motion.  

To start with let us take our prototype system of mass and spring with unstretched length of the 

spring so that equilibrium distance of the mass is . Now when the mass is displaced about 

by x in the positive direction, the force is in negative direction so that  

 

or  

 

This is the general equation for simple harmonic oscillator. Recall that in such cases we 

assume a solution of the form  
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and substitute it in the equation to get  

 

Since this equation is true for all times, we should have  

 

Thus there are two solution and . A general solution is then given in terms of a 

linear combination of the two solutions so let us write  

 

Since is real it is clear that . Thus  

 

If we take A = AR + iAI , where both AR   and AI   are real then the solution above takes the 

form  

 

which alternatively can be written as  

 

Another equivalent way of writing the solution is  

or  

where  

 

A is the maximum distance that the mass travels during a simple harmonic oscillation. It is 

known as the amplitude of oscillation. The quantity is known as the phase with Φ 

being the initial phase. All the boxed equations above are equivalent ways of writing the 
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solution for a harmonic oscillator. The general graph depicting the solution 

is given in figure 2.  

 

Thus A is the maximum distance traveled by the block and gives its initial 

displacement. The constants C and D or A and are determined by the initial conditions, i.e. 

initial displacement and velocity of the mass. In general any two conditions are enough to 

determine the constants.  

For a displacement  

 

the velocity of the mass is given by  

 

Thus the maximum possible magnitude of the velocity is ω0 A . The general displacement and 

the corresponding velocity of the mass with respect to time are displayed in figure 3.  
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It is clear from the figure that for a given displacement, the velocity is such that when 

displacement is at its maximum or minimum, the velocity is zero and when the displacement is 

zero, the velocity has the largest magnitude. This is physically clear. When the spring is 

compressed or stretched to its maximum, the particle is at rest and when the particle passes 

through the equilibrium point, its speed is at its maximum. Let me now solve a few examples.  

Example 1: In a spring-mass system k = 16 N/m and m = 1 kg . If the mass is displaced by .05 

m and released from rest, find its subsequent motion.  

 

 

Using the initial conditions I get  

x(0)= D = 0 .05m  

 

So the solution is with the maximum speed of 0.2m/s . The solution x(t) is 

plotted in figure 4. Also plotted there is the velocity v(t) of the mass as it performs its motion. 

Notice that from the x(t) curve, the velocity can be easily plotted by taking its slope.  
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Let me now show you how the solution changes when the initial conditions are different. 

Suppose instead of pulling the mass and releasing it, I give it an initial velocity of .1m/s toward 

the right from the equilibrium. In that case  

 

So . Obviously the maximum speed in this case is 0.1m/s, that given in the 

beginning. The solution looks like shown in figure 5.  
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Third possibility of initial conditions is when I take the mass to a displacement of .05m and 

push it towards the equilibrium point with a speed of .1m/sec. Then  

 

Thus the solution is . If we wish to express this as 

then  

 

and  

 

This gives and . The maximum speed in this case is vmax = 4 

x 0.056 = 0.224m/s . So the graph of the motion looks like that shown in figure 6.  
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From the graph it is very clear that initially the speed of the particle increases in the negative 

direction and then the particle starts slowing down, stopping at the full compression of the 

spring, as is clear from the plot of its displacement.  

If in the case studied just now, the mass was thrown out instead of being pushed in, it would 

have a positive velocity to start with but the speed would be decreasing at that moment. Then 

the mass will travel out to its maximum displacement and would then turn back. The general 

plot of displacement and velocity versus time would then look as in figure 7. I will leave it for 

you to work out the numbers for amplitude and initial phase.  
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Example 2: In the second example I show that about any stable equilibrium point, the motion 

to a good degree is simple harmonic. let us take two changes of 10 µC each at a distance of 

half a meter so that is a positive charge of 5 µC is kept at the centre, its experiences no force 

(see figure 8). The 5 µC charge is confined to move along the line joining the two changes. If 

displaced by a small distance from its equilibrium position, what kind of motion does it 

perform?  

 

When the 5 µC is displaced to the right by x, the force on it is  

 

In obtaining the force above, we have used the binomial theorem to expand . Since 

the force is proportional to the displacement and in direction opposite to it, the charge will 
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perform simple harmonic motion.  

Let me now look at some other examples, going beyond the spring-mass system.  

   

Example 3: A disc of mass M and radius R is hanging on a will about a point on its periphery 

(see figure 9). If it is displaced from its initial position by small angle and released, find its 

subsequent motion.  

 

This is a case where a rigid body is moving under distributed forces so we use angular 

momentum to describe its motion. The equation of its motion therefore is  

 

By transformation theorem,  

 

So the equation of motion becomes  

 

This means that in general the motion of the disc would be simple harmonic and will be given 
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as  

 

The initial conditions in this case give C = 0 and D = θ0 . Therefore the solution in the present 

case is .  

   

Example 4: As the final example here, let me take a particle moving in a potential 

.The potential has a minimum at x0 given by  

 

You can yourself check that the second derivative at this point is positive and its value is 8B. 

For very small displacements x about this point we have the change in the potential energy 

given as  

 

which by binomial theorem or the Taylor series expansion leads to  

 

This gives an equivalent spring constant of k=8B and frequency of oscillation .  

Having solved these examples I now wish to discuss a very important topic of phase and phase 

difference in a simple-harmonic motion. I will spend some time discussion phasor diagrams 
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give a feel for the phase.  

Phase and Phase difference in simple harmonic motion : In general the solution of a simple 

harmonic equation is  

 

As mentioned earlier A is known as the amplitude and as the phase. is a constant 

depending on the initial conditions and we call it the phase constant. Let us now see how does 

the motion look for different values of the phase constant . The displacement versus time 

plots for different signs of the phase constant are shown in figure 10.  

 

For Φ > 0 the motion at t = 0 begin at a value or phase angle that it would have slightly later in 

the case. On the other hand, for Φ < 0 the motion is such that a particular displacement 

for the case is reached at a later time. The motion lags behind the motion. I leave it 

for you to figure out yourself how the corresponding velocities are related.  

Let us now at the special case of . In this case I get  

 

and for  
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So you see that a phase difference of 180
o
, whether position or negative, means the same thing. 

I would like you to plot the displacement versus time graph for these particular cases. For the 

phases in between you should see for yourself how the displacements at t = 0 are different from 

case.  

A good way of visualizing the simple harmonic motion is the phasor or vector diagram. I 

discuss that next.  

   

Phasor or vector diagram: A nice geometric way of looking at various quantities in a simple 

harmonic motion is the vector or a phasor diagram. You may have seen it in your 12
th

 grade 

while studying AC circuits. Let me show you how we represent in a geometric 

way. You see that displacement in this case is the x component of a vector making an angle ωt 

from the x-axis. Thus the displacement is represented as shown in figure 11. The motion 

described by is thus given by the projection of a vector of length A, rotating 

counterclockwise at a rate ω, on the x-axis.  

 

Let us now see how the velocity and the acceleration will be represented in this scheme? 

The velocity and acceleration are given as  
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The displacement, velocity and acceleration are shown in the phasor diagram in figure 12. A 

general feature that we observe from this phase diagram is that the velocity vector is always 

ahead (measuring counterclockwise) of the displacement vector and the acceleration vector is 

at π (ahead or behind?) the displacement.  

 

So far we have discussed the simple case of . What about the general case of 

. This is also equally simple. All we have to do is keep the initial position 

of the vector at t = 0 at an angle Φ from the x-axis and start rotating it from there. The velocity 

vector and the acceleration vector are then going to be given at and π from it, as discussed 

above. This is shown in figure 13.  



276 
 

 

Recall that in the middle of this lecture I had solved a spring-mass problem with different 

initial conditions. I would like you to make the phasor diagram to represent the motion of the 

mass in many different situations like those considered above. Do not solve for x(t) to start 

with, just make the phasor diagram directly to see if you have got a feel for motion under 

different conditions.  

Finally in this lecture I look at the energy of a system performing simple harmonic motion. The 

potential energy U(x) and the kinetic energies T are  

 

The total energy E is of course a sum of the two. With   this gives  

 

Since , we get  

 

Thus the energy depends on the square of the amplitude. This makes sense because if I stretch 
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a spring by A, the energy stored in it is . On releasing the mass it performs oscillations 

of amplitude A. Thus you see that amplitude A immediately implies a total energy given 

above.  

I have now set up all the basic concepts of simple harmonic motion. In the coming lectures I 

will introduce damping in the system and see how it evolves.  

Harmonic oscillator II: damped oscillator  

In the previous lecture, I covered some basic aspects of simple harmonic oscillations. We 

considered the equation  

 

and saw how its motion is described. A general solution of this equation is  

 

I now make the system little more realistic and introduce damping into the system. Let us first 

look at what happens if we introduce friction into the system. I consider again our prototype 

spring-mass system and let there be a constant frictional force f on the mass. This force will 

always oppose the motion so the system will eventually come to a stop. Let us see when does it 

do that?  

The simplest way of seeing when he system will stop is the through the consideration of 

energy. But I would like to solve the problem by employing the equation of motion. I will later 

solve it from energy considerations also. Here is one case where I will have to analyze motion 

step by step because as the velocity direction changes, so does the force direction. So let us pull 

the spring out to a distance A and let it move towards the equilibrium point (see figure 1).  
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When the block is moving towards the left, equation governing its motion will be  

 

In the above, the frictional force f sign is positive because the mass is moving in the negative x 

direction and therefore the frictional force is in positive x direction. This equation can be recast 

into the form  

 

We have encountered such kind of equation earlier. It has a homogeneous part and 

an inhomogeneous term on the right-hand side. So the general solution is  

 

where  

 

Thus  

 

With the initial conditions , the solution is  

 

This is the solution when the block is moving to the left. Since  

 

so the block will come to a stop when . At that time  
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So by the time the block comes to a stop it has lost distance from its amplitude. And this 

loss is irrespective of the distance from where the block starts its motion from. This should 

then also happen when the block starts coming back. Let us find that out. On its way back (see 

figure 2), the block follows the equation  

 

Notice that the sign of the friction force is now negative. This is because now the block is 

traveling to the right and therefore the friction force acts towards the left (see figure 2).  

 

Now we have to solve this equation with the initial condition that  

 

I leave it as an exercise for you to get the solution. It is  

 

The corresponding velocity is proportional to ω0t, and therefore goes to zero again after a time 

interval of . At that time . Thus every half time the block goes from one 
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extreme to the other, it loses a distance of , and in each cycle it loses a distance of 

. Question is how many cycles does the block complete before it comes to a stop. The block 

stops when its final displacement is . If it completes n cycles before that, we have  

 

The same result can also be obtained, as I said earlier, by energy methods. If stretched by A the 

total energy of the system is . Let us say that before stopping, the block it compresses the 

spring by A1. Then its energy will be . The loss in the energy is caused by friction. Thus  

 

The total distance moved by the block is (A+A1) and so the energy lost against friction is 

f(A+A1) . Thus the equation transforms to  

 

and gives  

 

which is the same loss in amplitude over half a cycle as obtained earlier. The rest of the 

analysis is the same as done earlier.  

Having dealt with the constant friction case, we now consider the most common example of 

damped oscillations. This is the oscillator where damping force is proportional to the velocity 

i.e.,  

 

In this case, the equation of motion is  
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Writing we get  

 

This is the equation for a damped oscillator. The equation is homogeneous in x so we assume a 

solution and substitute it in the equation to get.  

 

which gives  

 

So the general solutions are  

 

Except in the case when (we will deal with it later) the behavior of the solution 

depends on the relation magnitude of γ and ω0. Let us first consider the case when . In 

that case  

 

The general solution then is  

 

This is known as a heavily damped oscillator. The coefficients C and D depend on the initial 

conditions. For example if I stretch the spring to a distance A and release the block, let us see 

what happen in this case. By initial conditions  
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This leads to  

 

A t → ∞ this solution behaves like . The general solution is displayed in 

figure 3.  

 

It is clear from the figure that there are no oscillations in this case the block slowly comes to 

rest at x = 0 , i.e. the equilibrium point. I now explore another situation. Suppose we give an 

implies (speed v ) at t = 0 then the boundary conditions are  

 

Thus the solution would be  

 

In this case the distance versus time graph looks as shown in figure 4.  
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The figure clearly shows that the block goes out to a maximum distance and then comes back 

and stops at the equilibrium point. So in both the cases studied above the mass does not cross 

the equilibrium point. Next I ask: what if we stretch the mass out to a distance A and give it an 

initial impulse from that point (in negative direction). Then the initial conditions will b  

 

Solution in this case comes out to be  

 

The solution is plotted schematically in figure 5.  
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It is clear that in this case the particle moves towards the equilibrium point, crosses it, goes a 

distance and comes back. However on its way back it slowly comes to rest at the equilibrium 

point and does not cross it. So in heavy damping cases, the block passes the equilibrium point 

at most once and its distance decays exponentially as .  

To summarize, I have covered three cases for the heavy damping situation and got  

(i) Spring stretched and block released  

(ii) The block given an initial positive velocity at equilibrium  

(iii) Spring stretched out and the block given a velocity in the negative direction  

 

I would now like to tell you about the case when . This is known as the critically 

damped case. Obviously this situation arises when . I can easily find solutions for 

such case if I take the limit in the cases of heavy damping just studied. Please note 

that I cannot straightaway take in the expressions above because I am dividing by 
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. Taking the limit gives for the three cases studied above  

(i)  

(ii)  

(iii)  

As remarked above, the cases we have just discussed correspond to critical damping. In this 

situation and . Mathematically, in this case there is only one 

solution     ( )   that we get from the equation for λ because of its double root. The other 

solution is found to be . That is precisely what we have found by taking appropriate 

limit.  

Critically damped system and used when we want a system to return to its equilibrium position 

after receiving an impulse, although one is tempted to say that use a heavily damped system for 

this purpose. I would like you to understand this by carrying out the following exercise.  

   

Exercise : The block on a damped spring-mass system is given an initial velocity v from 

equilibrium. Given a damping coefficient γ, plot the distance versus time graph for the 

critically and heavily damped cases. For ease of calculation take the heavy damping to be very 

large so that and make appropriate approximations.  

   

Having discussed the heavily and critically damped systems, we move on to lightly damped 

system. In such systems   so that  

 

So the general solution is  
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Or equivalently  

 

In case when , it is called very light damping and in such case .  

Let us now take a particular can when the block is stretched to distance A and is released from 

rest. I leave the details of the solution to be worked out by you. Here I give the final answer 

which is  

 

This solution is plotted schematically in figure 6. Notice how the maximum distance reached 

by the block decreases with time.  

 

When we consider light damping, generally we are dealing with cases where we want the 

decay to be small. Thus within the time that the motion decays, there are many-many 

oscillations. Thus we can then write the displacement as  
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because implies that . The equation above is interpreted as the 

oscillation taking place with frequency w 0 with time-dependent amplitude . 

Mathematically what this means is that   so there are two time scales in the problem. 

Let me now talk about the energy of the system. Since the amplitude is decreasing with time, 

the system is obviously losing energy. I want to calculate the rate of energy loss in the system. 

First, there and many oscillations over the time interval of , which is also a very large time 

span. Further, the decay of the amplitude is very small over a few periods. This allows us to 

talk in terms of the average energy of the system. What it means is the energy averaged over a 

few cycles around a given instant. I now calculate it.  

 

Now use to calculate this energy. It gives  

 

Now taking an average over a few cycles under the approximation that the exponentially 

decaying term be treated as roughly a constant over these cycles and neglecting the term 

proportional to γ
2
 , I get  

 

where angular brackets denote the average energy. So the average energy decays exponentially 

for a lightly damped oscillator.  

I now define the quality factor or Q for an oscillator. As mentioned earlier, we are interested in 
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systems where ; it is in such cases only that talking about Q makes sense. Q is defined 

as  

 

High Q value for an oscillator means that there is very low leakage compared to the store 

energy.  

Finally I summarize the lecture by telling you that we have covered the cases of heavy, critical 

and light damping in this lecture. You must have noticed that I have made a lot of graphs in 

this and the previous lecture. Please do that when you solve a problem. It will give you a feel 

for the system 

Harmonic oscillator III: Forced oscillations  

In the previous two lectures, you have learnt about free harmonic oscillator and damped 

harmonic oscillator. In this lecture we study what happens when a harmonic oscillator is 

subjected to a force. The simplest case is when an oscillator is subjected to a constant force F . 

In that case nothing much takes place except that the equilibrium point gets shifted by (F/k). 

You see an example of it when a mass is attached to a vertical spring. Mathematically we write  

 

This can be written as  

 

for an undamped oscillator and  

 

for a damped oscillator. Define a new variable   so that the equation reads (I write 

only the undamped oscillator equation)  
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This is the equation you are well familiar with. From its solution, that for x is written as  

 

So the mass oscillates about . I now take up an oscillator subjected to a time-

dependent force.  

A general time-dependent force F(t) can always be decomposed into its Fourier components 

like so generally we study an oscillator subjected to a force of the form. 

, where and F is the amplitude of the force. Let me start by first 

studying the motion of an undamped oscillator under such a force.  

The equation of motion for an undamped oscillator under a time-periodic force is  

 

or equivalently  

 

The general solution is a combination of homogeneous part of the equation and a particular 

solution xp. Thus  

 

Here you can check that  

 

Let me start the oscillator from rest at equilibrium. It starts moving because of the applied 

force. The initial conditions then are . Under these conditions the solution 

comes out to be  

 

So the general solution is a combination of motion of two frequencies. The resulting motion 

can be represented on a phasor diagram by adding the two motions vectorially. This shown at t 

= 0 and two other different times in figure 1.  
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As is clear from the figure, at t = 0, the net displacement is zero. As the time progresses, the 

displacement changes with the length of the rotating vector also changing with time. As an 

illustrative example, I take the frequency , and two different frequencies, 

for the force. The resulting solutions are shown in figure 2.  
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So you see from the figure above that the maximum displacement of oscillations keeps 

changing. This is what I had inferred from the phasor diagram also. The motion is still periodic 

and reminds us of the phenomena of beats.  

Interesting is the case when . However, I cannot put it directly in the formula become 

we are dividing by . So we have to take the limit . Let me substitute in the 

formula or and take . This leads to  

 

Thus the displacement keeps on increasing with time oscillating with the frequency of the 

oscillator. This is the phenomena of resonance. The corresponding plot of displacement is 

shown in figure 3.  
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Forced oscillations of an undamped at resonance  

Figure 3  

Having discussed forced oscillations for undamped oscillator, we now move on to study a 

damped oscillator moving under the influence of a periodic force. The equation of motion then 

is  

 

As earlier, the general solution of this equation is going to the sum of the homogenous and 

inhomogeneous part. So  
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As the time progresses will make the homogeneous solution die down so finally the only 

solution remaining will be  

 

This is known as the steady state solution. Obviously it does not depend on the initial 

conditions. Let us now find this solution.  

For the equation of motion  

 

I assume a steady state solution of the form   But when substituted in the equation, 

this will give rise to a term containing because of in the equation. So a general 

solution should be of the form.  

 

When substituted in the equation, this leads to  

 

These equations give  

 

So the general solution is  
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where  

 

Thus after reaching steady state, the displacement lags behind the applied force by an angle 

with   and oscillates with an amplitude  

 

The oscillation frequency of steady-state solutions is obviously equal to the frequency of the 

applied force. A typical displacement and its shift with respect to the applied force are shown 

in figure 4.  
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As far as getting the steady state solution for a forced damped oscillator is concerned, we are 

done. What we need to do now is to analyze the solution in different situations.  

First of all we notice that irrespective of whether the system is lightly damped or heavily 

damped, it will always oscillate under an applied time-periodic force. Let us first consider the 

case of light damping and see how the amplitude varies with the applied frequency. The 

amplitude as a function of ω is given as  

 

This amplitude goes to as . This is nothing but the stretch of the spring 

under a constant force. For very large frequencies . In between the amplitude has a 

maximum at as is easily seen. So in this case, the amplitude as a function of frequency 

looks as shown in figure 5 for two different values of γ .  
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It is clear from the figure that the amplitude is maximum around which reminds us of 

the phenomenon of resonance for undamped oscillator. For large γ values the peak shifts to the 

left (lower frequency).  

For heavy damping ( γ > ) we do not see any amplitude maximum near but the 

system has large amplitude for low frequencies. A schematic plot of amplitude as a function of 

frequency looks like figure 6. It is evident that only for low frequencies the system oscillates 

with reasonable amplitude.  
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What about the phase of the system with respect to the applied force? I leave this as an exercise 

for you to plot the phase of displacement as a function of frequency.  

Next I discuss how much power is absorbed by the system to maintain its oscillations.  

Power absorption in a forced damped oscillator : Since a damped system has a retardation 

force opposing its motion, it dissipates energy. For it to maintain a steady-state the applied 

force constantly supplies energy to it. It is this power that I now calculate. Power given to the 

system is since I am considering a one dimensional system. Otherwise I would have 

taken the dot product between the force and the velocity. The calculation proceeds as follows  

   

 

Since the average of over a cycle is ½ and that of zero, the average 

the last expression with respect to time over one cycle gives  

 

This is the average power being supplied to the system to maintain its steady-state. The same 

can also be obtained by realizing that in steady-state the power given to the system is the same 

as power dissipated by it. Power dissipated is the drag force times the 

velocity. This is therefore calculated as follows:  

 

Taking its time average over a cycle then gives the average dissipated power  
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which is the same result as obtained above. The negative sign shows that this is the energy lost, 

and produced heat due to the friction in the system. Since the amplitude of the motion is largest 

when the force has a frequency close to the natural frequency of a system, it is expected that 

the power loss will also be maximum near that frequency. I have plotted the power dissipated 

in a forced damped harmonic oscillator in figure 7.  

 

The curve peaks at ω0 so the power absorption is indeed maximum at the resonance frequency.  

Finally I relate the Q factor of a damped oscillator with the power versus frequency curve 

given above. To do this let us see at what frequency does the power absorption is ½ of its peak 

value. The calculation, in which we make the frequency-dependent factor in the expression for 

power dimensionless and equate it to ½, is given below  

 

Solving this equation for the frequency ω under the approximation of light-damping gives  
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The frequency width from is known as full width at half maximum 

(FWHM) and its value is γ. Thus the quality factor can also be interpreted as  

 

   

This pretty much sums up what I want to tell you about forced oscillations. I want to point out 

that we have focused here strictly on the steady-state solutions for the damped oscillator. 

However, before steady-state is reached, the system goes through transient motion, which is 

also important to understand in designing of systems.  

   

This lecture brings us to the close of our discussion on harmonic oscillators.  
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